10.1002/anie.202009844
Angewandte Chemie International Edition
COMMUNICATION
1881−1886; d) T. Furuya, A. Kamlet, T. Ritter, Nature 2011, 473,
470−477; e) A. Studer, Angew. Chem., Int. Ed. 2012, 51, 8950−8958;
Angew. Chem. 2012, 124, 9082−9090; f) X. Yang, T. Wu, R. J. Phipps,
F. D. Toste, Chem. Rev. 2015, 115, 826−870; g) J.-W. Lee, M. T. Oliveira,
H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim, C. E. Song, Chem. Soc. Rev.
2016, 45, 4638−4650; h) S. V. Kohlhepp, T. Gulder, Chem. Soc. Rev.
2016, 45, 6270−6288; i) J. Miró, C. Pozo, Chem. Rev. 2016, 116,
11924−11966; j) M. G. Holl, C. R. Pitts, T. Lectka, Angew. Chem., Int. Ed.
2018, 57, 2758−2766; Angew. Chem. 2018, 130, 2806−2815; k) S.
Fustero, D. M. Sedgwick, R. Román, P. Barrio, Chem. Commun. 2018,
54, 9706−9725; l) D. D. Bume, S. A. Harry, T. Lectka, C. R. Pitts, J. Org.
Chem. 2018, 83, 8803−8814; m) J. Moschner, V. Stulberg, R. Fernandes,
S. Huhmann, J. Leppkes, B. Koksch, Chem. Rev. 2019, 119,
10718−10801; n) Y. Ogiwara, N. Sakai, Angew. Chem., Int. Ed. 2020, 59,
574−594; Angew. Chem. 2020, 132, 584−605.
Konishi, X. Li, J. Phys. Chem. Lett. 2010, 1, 997−1002; b) X. Xu, Z. Wu,
L. Xiao, Y. Jia, J. Ma, F. Wang, L. Wang, M. Wang, H. Huang, J. Alloy.
Comp. 2018, 762, 915−921; c) H. Mohapatra, M. Kleiman, A. P. Esser-
Kahn, Nat. Chem. 2017, 9, 135−139; d) Z. Wang, X. Pan, J. Yan, S.
Dadashi-Silab, G. Xie, J. Zhang, Z. Wang, H. Xia, K. Matyjaszewski, ACS
Macro Lett. 2017, 6, 546−549.
[12] C. Schumacher, J. G. Hernández, C. Bolm, C. Angew. Chem., Int. Ed.
2020, Early View. DOI: 10.1002/anie.202003565.
[13] a) T. Umemoto, S. Ishihara, J. Am. Chem. Soc. 1993, 115, 2156−2164;
b) T. Umemoto, B. Zhang, T. Zhu, X. Zhou, P. Zhang, S. Hu, Y. Li, J. Org.
Chem. 2017, 82, 7708−7719; c) S.-M. Wang, J.-B. Han, C.-P. Zhang, H.-
L. Qin, J.-C. Xiao, Tetrahedron 2015, 71, 7949−7976.
[14] (a) N. Noto, Y. Tanaka, T. Koike, M. Akita, ACS Catal. 2018, 8,
9408−9419; b) M. Li, X.-S. Xue, J.-P. Cheng, Acc. Chem. Res. 2020, 53,
182−197.
[6]
For selected examples of trifluoromethylation by means of cross-
coupling reactions mediated or catalyzed by transition metals in solution,
see: a) H. Kawai, T. Furukawa, Y. Nomura, E. Tokunaga, N. Shibata,
Org. Lett. 2011, 13, 3596−3599; b) J.-B. Liu, C. Chen, L. Chu, Z.-H. Chen,
X.-H. Xu, F.-L. Qing, Angew. Chem., Int. Ed. 2015, 54, 11839−11842;
Angew. Chem. 2015, 127, 12005−12008; c) N. Früh, A. Togni, Angew.
Chem., Int. Ed. 2014, 53, 10813−10816; Angew. Chem. 2014, 126,
10989−10992; d) Q. Wang, C. Ni, M. Hu, Q. Xie, Q. Liu, S. Pan, J. Hu,
Angew. Chem., Int. Ed. 2020, 59, 8507−8511; Angew. Chem. 2020, 132,
8585−8589; e) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C.
Gu, J.-C. Xiao, Angew. Chem., Int. Ed. 2011, 50, 1896−1900; Angew.
Chem. 2011, 123, 1936−1940; f) P. Novák, A. Lishchynskyi, V. V.
Grushin, J. Am. Chem. Soc. 2012, 134, 16167−16170; g) X. Wang, Y.
Xu, F. Mo, G. Ji, D. Qiu, J. Feng, Y. Ye, S. Zhang, Y. Zhang, J. Wang, J.
Am. Chem. Soc. 2013, 135, 10330−10333; h) E. J. Cho, T. D. Senecal,
T. Kinzel, Y. Zhang, D. A. Watson, S. L. Buchwald, Science 2010, 328,
1679−1681; i) H. Shen, Z. Liu, P. Zhang, X. Tan, Z. Zhang, C. Li, J. Am.
Chem. Soc. 2017, 139, 9843−9846; j) D. J. P. Kornfilt, D. W. C. MacMillan,
J. Am. Chem. Soc. 2019, 141, 6853−6858; k) M. S. Winston, W. J. Wolf,
F. D. Toste, J. Am. Chem. Soc. 2014, 136, 7777−7782; l) N. D. Ball, J.
W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2010, 132, 2878−2879.
For selected examples of C−H trifluoromethylation reactions in solution
that proceed via radical mechanisms, see: a) B. Yang, D. Yu, X.-H. Xu,
F.-L. Qing, ACS Catal. 2018, 8, 2839−2843; b) J.-S. Lin, X.-Y. Dong, T.-
T. Li, N.-C. Jiang, B. Tan, X.-Y. Liu, J. Am. Chem. Soc. 2016, 138,
9357−9360; c) R. Tomita, Y. Yasu, T. Koike, M. Akita, Angew. Chem.,
Int. Ed. 2014, 53, 7144−7148; Angew. Chem. 2014, 126, 7272−7276; d)
R. Zhu, S. L. Buchwald, Angew. Chem., Int. Ed. 2013, 52, 12655−12658;
Angew. Chem. 2013, 125, 12887−12890; e) H. Xiao, H. Shen, L. Zhu, c.
Li, J. Am. Chem. Soc. 2019, 141, 11440−11445; f) P. J. Sarver, V.
Bacauanu, D. M. Schultz, D. A. Dirocco, Y.-H. Lam, E. C. Sherer, D. W.
C. MacMillan, Nat. Chem. 2020, 12, 459−467; g) F. Ye, F. Berger, H. Jia,
J. Ford, A. Wortman, J. Börgel, C. Genicot, T. Ritter, Angew. Chem., Int.
Ed. 2019, 58, 14615−14619; Angew. Chem. 2019, 131, 14757−14761;
h) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G.
Blackmond, P. S. Baran, Proc. Natl. Acad. Sci. U. S. A. 2011, 108,
14411−14415; i) E. A. Meucci, S. N. Nguyen, N. M. Camasso, E. Chong,
A. Ariafard, A. J. Canty, M. S. Sanford, J. Am. Chem. Soc. 2019, 141,
12872−12879.
[15] T. Friščić, S. L. Childs, S. A. A. Rizvi, W. Jones, CrystEngComm 2009,
11, 418−426.
[16] D. A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224−228.
[17] For selected examples of postsynthetic transformations of tryptophan-
containing peptides, see: a) J. M. Antos, M. B. Francis, J. Am. Chem.
Soc. 2004, 126, 10256−10257; b) B. V. Popp, Z. Ball, J. Am. Chem. Soc.
2010, 132, 6660−6662; c) K. L. Seim, A. C. Obermeyer, M. B. Francis, J.
Am. Chem. Soc. 2011, 133, 16970−16976; d) L. Mendive-Tapia, S.
Preciado, J. García, R. Ramón, N. Kielland, F. Albericio, R. Lavilla, Nat.
Commun. 2015, 6, 7160−7168; e) Y. Seki, T. Ishiyama, D. Sasaki, J. Abe,
Y. Sohma, K. Oisaki, M. Kanai, J. Am. Chem. Soc. 2016, 138,
10798−10801; f) A. Schischko, H. Ren, N. Kaplaneris, L. Ackermann,
Angew. Chem., Int. Ed. 2017, 56, 1576−1580; Angew. Chem. 2017, 129,
1598−1602; g) Y. Yu, L.-K. Zhang, A. V. Buevich, G. Li, H. Tang, P.
Vachal, S. L. Colletti, Z.-C. Shi, J. Am. Chem. Soc. 2018, 140,
6797−6800; h) M. J. Terry, A. Holmes, C. C. Perry, W. B. Cross, Org.
Lett. 2019, 21, 7902−7907.
[18] For selected examples of solution-based radical C−H trifluoromethylation
of tryptophan-containing peptides, see: a) P. Liu, W. Liu, C.-J. Li, J. Am.
Chem. Soc. 2017, 139, 14315−14321; b) N. Ichiishi, J. P. Caldwell, M.
Lin, W. Zhong, X. Zhu, E. Streckfuss, H.-Y. Kim, C. A. Parish, S. W. Krska,
Chem. Sci. 2018, 9, 4168−4175; c) M. Imiolek, G. Karunanithy, W.-L. Ng,
A. J. Baldwin, V. Gouverneur, B. G. Davis, J. Am. Chem. Soc. 2018, 140,
1568−1571; d) B. Ding, Y. Weng, Y. Liu, C. Song, L. Yin, J. Yuan, Y. Ren,
A. Lei, C.-W. Chiang, Eur. J. Org. Chem. 2019, 7596−7605; e) C. W. Kee,
O. Tack, F. Guibbal, T. C. Wilson, P. G. Isenegger, M. Imiolek, S.
Verhoog, M. Tilby, G. Boscutti, S. Ashworth, J. Chupin, R. Kashani, A.
W. J. Poh, J. K. Sosabowski, S. Macholl, C. Plisson, B. Cornelissen, M.
C. Villis, J. Passchier, B. G. Davis, V. Gouverneur, J. Am. Chem. Soc.
2020, 142, 1180−1185; f) I. Guerrero, A. Correa, Org. Lett. 2020, 22,
1754−1759.
[7]
[19] a) Y. Yasu, T. Koike, M. Akita, Angew. Chem., Int. Ed. 2012, 51,
9567−9571; Angew. Chem. 2012, 124, 9705−9709; b) T. Koike, M. Akita,
Acc. Chem. Res. 2016, 49, 1937−1945.
[20] a) O. S. Herrera, J. D. Nieto, S. I. Lane, E. V. Oexler, Can. J. Chem. 2003,
81, 1477−1481; b) K. Maruyama, A. Sakai, T. Goto, J. Phys. D: Appl.
Phys. 1993, 26, 199−202; c) K. Maruyama, K. Ohkouchi, Y. Ohtsu, T.
Goto, Jpn. J. Appl. Phys. 1994, 33, 4298−4302.
[8]
[9]
K. Kubota, Y. Pang, A. Miura, H. Ito, Science 2019, 366, 1500−1504.
For recent reviews on the use of piezoelectric materials for catalytic
applications in solution, see. a) M. Wang, B. Wang, F. Huang, Z. Lin,
Angew. Chem., Int. Ed. 2019, 58, 7526−7536; Angew. Chem. 2019, 131,
7606−7616; b) S. Li, Z. Zhao, J. Zhao, Z. Zhang, X. Li, J. Zhang, ACS
Appl. Nano Mater. 2020, 3, 1063−1079.
[10] a) D. P. Hari, P. Schroll, B. König, J. Am. Chem. Soc. 2012, 134,
2958−2961; b) J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal. 2012, 354,
2625−2628.
[11] For selected examples of the use of BaTiO3 with ultrasonic agitation to
produce an electrochemical potential, see: a) K.-S. Hong, H. Xu, H.
This article is protected by copyright. All rights reserved.