Journal of Materials Chemistry C
Paper
samples (ꢁ0.5 mg) and a heating rate of 5 K minꢀ1. The results 11 N. Aziz, S. M. Kelly, W. Duffy and M. Goulding, Liq. Cryst.,
are provided in the ESI. The virtual N–I transition temperatures,
2008, 35, 1279–1292.
[TNI], were determined by linear extrapolation of the data for the 12 J. Qiu, L. Wang, M. Liu, Q. Shen and J. Tang, Tetrahedron
peak of the transition to pure substance (x ¼ 1). To minimize Lett., 2011, 52, 6489–6491.
the error, the intercept in the tting function was set as the peak 13 T. A. Kizner, M. A. Mikhaleva and E. S. Serebryakova, Chem.
TNI for the pure host. Heterocycl. Compd., 1990, 26, 668–670.
Electrooptical measurements. Dielectric properties of solu- 14 B. Ringstrand, A. Jankowiak, L. E. Johnson, P. Kaszynski,
´
tions of selected esters in ClEster were measured by a Liquid
Crystal Analytical System (LCAS – Series II, LC Vision, Inc.) using
D. Pociecha and E. Gorecka, J. Mater. Chem., 2012, 22,
4874–4880.
GLCAS soware version 0.13.14, which implements literature 15 S. M. Kelly, Helv. Chim. Acta, 1989, 72, 594–607.
procedures for dielectric constants.28 The instrument was cali- 16 A. Jankowiak, B. Ringstrand, A. Januszko, P. Kaszynski and
brated using a series of capacitors. The homogeneous binary
mixtures were loaded into ITO electro-optical cells by capillary 17 S. Hayashi, S. Takenaka and S. Kusabayashi, Bull. Chem. Soc.
forces with moderate heating supplied by a heat gun. The cells Jpn., 1984, 57, 283–284.
(about 10 mm thick, electrode area 1.00 cm2 and anti-parallel 18 W. Maier and G. Meier, Z. Naturforsch., A: Phys. Sci., 1961, 16,
rubbed polyimide layer) were obtained from LC Vision, Inc. The 262–267 and 470–477.
lled cells were heated to the isotropic phase and cooled to rt 19 S. Urban, in Physical Properties of Liquid Crystals: Nematics,
M. D. Wand, Liq. Cryst., 2013, 40, 605–615.
before measuring the dielectric properties. Default parameters
were used for measurements: triangular shaped voltage bias
ed. D. A. Dunmur, A. Fukuda and G. R. Luckhurst, IEE,
London, 2001, pp. 267–276.
´
ranging from 0.1–20 V at 1 kHz frequency. The threshold 20 P. Kaszynski, A. Januszko and K. L. Glab, J. Phys. Chem. B,
voltage, Vth, was measured at a 5% change. For each mixture the 2014, 118, 2238–2248.
measurement was repeated 10 times for two cells. The results 21 R. Dabrowski, J. Jadzyn, S. Czerkas, J. Dziaduszek and
were averaged to calculate the mixture's dielectric parameters. A. Walczak, Mol. Cryst. Liq. Cryst., 1999, 332, 61–68.
Results are provided in the ESI† and extrapolated values for 22 For details see the ESI.†
pure additives are shown in Table 4.
23 A. I. Pavluchenko, N. I. Smirnova, V. F. Petrov, Y. A. Fialkov,
S. V. Shelyazhenko and L. M. Yagupolsky, Mol. Cryst. Liq.
Cryst., 1991, 209, 225–235.
24 P. K˛edziora and J. Jad˙zyn, Mol. Cryst. Liq. Cryst., 1990, 192,
31–37.
Acknowledgements
This work was supported by NSF grant DMR-1207585. We are
grateful to Professor Roman D˛abrowski of the Military Univer-
sity of Technology (Warsaw, Poland) for the gi of ClEster.
˙
25 P. K˛edziora and J. Jadzyn, Acta Phys. Pol., A, 1990, 77, 605–
610.
26 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,
E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi,
J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam,
M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and
D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc.,
Wallingford CT, 2009.
References
1 D. Pauluth and K. Tarumi, J. Mater. Chem., 2004, 14, 1219–
1227.
2 M. Bremer, P. Kirsch, M. Klasen-Memmer and K. Tarumi,
Angew. Chem., Int. Ed., 2013, 52, 8880–8896.
3 B. Ringstrand, P. Kaszynski, A. Januszko and V. G. Young, Jr,
J. Mater. Chem., 2009, 19, 9204–9212.
´
4 J. Pecyna, D. Pociecha and P. Kaszynski, J. Mater. Chem. C,
2014, 2, 1585–1591.
5 B. Ringstrand and P. Kaszynski, J. Mater. Chem., 2011, 21, 90–95.
6 B. Ringstrand and P. Kaszynski, J. Mater. Chem., 2010, 20,
9613–9615.
7 B. Ringstrand, M. Oltmanns, J. A. Batt, A. Jankowiak,
R. P. Denicola and P. Kaszynski, Beilstein J. Org. Chem.,
2011, 7, 386–393.
8 J. Pecyna, R. P. Denicola, B. Ringstrand, A. Jankowiak and
P. Kaszynski, Polyhedron, 2011, 30, 2505–2513.
27 M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys.,
2002, 117, 43–54 and references therein.
28 S.-T. Wu, D. Coates and E. Bartmann, Liq. Cryst., 1991, 10,
635–646.
ˇ
9 B. Ringstrand, P. Kaszynski, V. G. Young, Jr and Z. Janousek,
Inorg. Chem., 2010, 49, 1166–1179.
10 J. Thomas and D. Clough, J. Pharm. Pharmacol., 1963, 15,
167–177.
2964 | J. Mater. Chem. C, 2014, 2, 2956–2964
This journal is © The Royal Society of Chemistry 2014