Inorganic Chemistry
FORUM ARTICLE
hydrogen atoms, slightly smaller polarized split-valence def2-SV(P) basis
sets were used that were of double-ζ quality in the valence region and
contained a polarizing set of d functions on the non-hydrogen atoms.
Auxiliary basis sets were chosen to match the orbital basis.49ꢀ51 The
RIJCOSX52ꢀ54 approximation was used to accelerate the calculations.
Throughout this paper we describe our computational results by
using the BS approach by Ginsberg55 and Noodleman et al.56 Because
several BS solutions to the spin-unrestricted KohnꢀSham equations
may be obtained, the general notation BS(m,n)57 has been adopted,
where m (n) denotes the number of spin-up (spin-down) electrons at
the two interacting fragments. Canonical and corresponding58 orbitals,
as well as spin density plots, were generated with the program Molekel.59
Nonrelativistic single-point calculations on the optimized geometry
were carried out to predict M€ossbauer spectral parameters (isomer shifts
and quadrupole splittings). These calculations employed the CP(PPP)
basis set for iron.60 The M€ossbauer isomer shifts were calculated from
the computed electron densities at the iron centers as previously
described.61,62
between U.S. and German Investigators grant. We also thank Jon
Darmon and Dr. Suzanne Bart for performing the electrochemical
studies.
’ REFERENCES
(1) Chirik, P. J.; Wieghardt, K. Science 2010, 327, 5967.
(2) Dzik, W. I.; van der Vlugt, J.; Reek, J. N. H.; De Bruin, B. Angew.
Chem. 2011, 50, 3356.
(3) (a) Kaim, W.; Scwederski, B. Coord. Chem. Rev. 2010, 254, 1580.
(b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
(c) Whittaker, J. W. Chem. Rev. 2003, 103, 2347. (d) Jazdzewski, B. A.;
Tolman, W. B. Coord. Chem. Rev. 2000, 200ꢀ202, 633. (e) Stubbe, J.;
Van der Donk, W. A. Chem. Rev. 1998, 98, 706.
(4) (a) Nguyen, A. I.; Zarkesh, R. A.; Lacy, D. C.; Thorson, M. K.;
Heyduk, A. F. Chem. Sci. 2011, 2, 166. (b) Nguyen, A. I.; Blackmore,
K. J.; Carter, S. M.; Zarkesh, R. A.; Heyduk, A. F. J. Am. Chem. Soc. 2009,
131, 3307. (c) Blackmore, K. J.; Sly, M. B.; Haneline, M. R.; Ziller, J. W.;
Heyduk, A. F. Inorg. Chem. 2008, 47, 10522. (d) Blackmore, K. J.; Ziller,
J. W.; Heyduk, A. F. Inorg. Chem. 2005, 44, 5559.
(5) Stanciu, C.; Jones, M. E.; Fanwick, P. E.; Abu-Omar, M. M. J. Am.
Chem. Soc. 2007, 129, 12400.
Preparation of [(iPrPDI)Fe(CO)2][BArF24]. A 20 mL scintillation
vial was charged with 0.110 g (0.185 mmol) of (iPrPDI)Fe(CO)2, 0.200 g
(0.184 mmol) of [Cp2Fe][BArF24], and a stir bar. With stirring,
approximately 7 mL of benzene was added to the mixture of solids. The
rate of stirring was increased as the reaction mixture thickened and a
precipitate formed. After 15 min, an equal volume of pentane was added,
and thestirring was continuedfor anadditional10 min. Theresultingsolid
was collected on a glass frit and washed four times with ∼20 mL of
pentane. The solidwas dried in vacuo and yielded0.260 g (98%) of a dark-
black-purple powder identified as [(iPrPDI)FeCO2][BArF24]. Elem anal.
Calcd for C67H55N3FeBF24O2: C, 55.24; H, 3.81; N, 2.88. Found: C,
55.33; H, 3.67; N, 2.81. IR (KBr): ν(CO) 2028 and 1981, ν(13CO) 1982
and 1937 cmꢀ1. Solid-state magnetic susceptibility (23 °C): μeff = 2.0 μB.
1H NMR (dichloromethane-d2): δ 1.40 (569 Hz), 4.32 (370 Hz), 7.35
(18 Hz), 7.58 (12 Hz), 7.76 (15 Hz), 9.44 (45 Hz).
(6) Lippert, C. A.; Arnstein, S. A.; Sherrill, C. D.; Soper, J. D. J. Am.
Chem. Soc. 2010, 132, 3879.
(7) King, E. R.; Betley, T. A. Inorg. Chem. 2009, 48, 2361.
(8) Puschmann, F. F.; Harner, J.; Stein, D.; Ruegger, H.; de Bruin, B.;
Gr€utzmacher, H. Angew. Chem., Int. Ed. 2010, 49, 385.
(9) Smith, A. L.; Hardcastle, K. I.; Soper, J. D. J. Am. Chem. Soc. 2010,
132, 14358.
(10) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B.
J. Am. Chem. Soc. 2010, 132, 10891.
(11) Figgins, P. E.; Busch, D. H. J. Am. Chem. Soc. 1960, 82, 820.
(12) Stouffer, R. C.; Hadley, W. B.; Busch, D. H. J. Am. Chem. Soc.
1961, 83, 3732.
(13) Schmidt, J. G.; Brey, W. S.; Stoufer, R. C. Inorg. Chem. 1967, 6,
268.
(14) Curry, J. D.; Robinson, M. A.; Busch, D. H. Inorg. Chem.
1967, 6, 1570.
Preparation of [Na(15-crown-5)][(iPrPDI)Fe(CO)2]. A 20 mL
scintillation vial was charged with 0.200 g (0.337 mmol) of
(
iPrPDI)Fe(CO)2 and 10 mL of diethyl ether. A 1% sodium amalgam
(15) Sacconi, L.; Morassi, R.; Midollini, S. J. Chem. Soc. A
1968, 1510.
(16) Davis, R. N.; Tanski, J. M.; Adrian, J. C.; Tyler, L. A. Inorg. Chim.
Acta 2007, 360, 3061.
(17) Bianchini, C.; Giambastiani, G.; Rios, I. G.; Mantovani, G.;
Meli, A.; Segarra, A. M. Coord. Chem. Rev. 2006, 250, 1391.
(18) Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox,
S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun.
1998, 849.
(19) (a) Small, B. M.; Brookhart, M. J. Am. Chem. Soc. 1998,
120, 7143. (b) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am.
Chem. Soc. 1998, 120, 4049.
(6 equivalents) was prepared in a separate vial in pentane. The amalgam
was added to the stirring iron solution. After the amalgam was added,
0.080 g (1.1 equiv) of 15-crown-5 was added. The resulting solution was
stirred for approximately 60 min, during which time a bright-green
precipitate formed and was collected on a glass frit. The green powder
was washed three times with ∼10 mL of toluene and pentane to yield
0.120 g (43%) of a green powder identified as [Na-15-crown-5]-
[(iPrPDI)Fe(CO)2]. Elem anal. Calcd for C45H63FeN3NaO7: C, 64.59;
H, 7.59; N, 5.02. Found: C, 64.50; H, 7.58; N, 4.64. IR (KBr): ν(CO)
1935 and 1863, ν(13CO) 1890 and 1819 cmꢀ1. Solid-state magnetic
susceptibility (23 °C): μeff = 1.9 μB.
(20) Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberely, B. S.;
Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan,
G. A.; Str€omberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc.
1999, 121, 8728.
(21) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc.
2004, 126, 13794.
’ ASSOCIATED CONTENT
S
Supporting Information. Crystallographic details for
b
[(iPrPDI)Fe(CO)2][BArF ] in CIF format and DFT-computed
4
bond distances. This material is available free of charge via the
(22) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J.
J. Am. Chem. Soc. 2006, 128, 13340.
(23) Sylvester, K. T.; Chirik, P. J. J. Am. Chem. Soc. 2009, 131, 8772.
(24) Russell, S. K.; Darmon, J. M.; Lobkovsky, E.; Chirik, P. J. Inorg.
Chem. 2010, 49, 2782.
(25) Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky,
E.; Neese, F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2006,
128, 13901.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: pchirik@princeton.edu.
(26) Bart, S. C.; Lobkovsky, E.; Bill, E.; Wieghardt, K.; Chirik, P. J.
Inorg. Chem. 2007, 46, 7055.
(27) Kuwabara, I. H.; Comninos, F. C. M.; Pardini, V. L.; Viertler,
H.; Toma, H. E. Electrochim. Acta 1994, 39, 2401.
’ ACKNOWLEDGMENT
We thank the U.S. National Science Foundation and Deutsche
Forschungsgemeinschaft for a Cooperative Activities in Chemistry
9894
dx.doi.org/10.1021/ic200730k |Inorg. Chem. 2011, 50, 9888–9895