to prepare [CuCF3] species and removal of excess amounts
of copper in a glovebox. One year later, Yagupolskii’s
group achieved trifluoromethylation of benzyl bromide in
moderate yield using [CuCF3] generated from (CF3)2Hg.7b
In order to avoid the vigorous conditions, toxic material or
a troublesome procedure is necessary to promote the
reaction. Fuchikami and Urata devised the conditions
for the trifluoromethylation of benzyl bromide by the use
of Et3SiCF3 in the presence of a stoichiometric amount of
KF and CuI.7c The generation of reactive [CuCF3] and
related species were further examined by developing con-
ditions such as Me3SiCF3/KF/CuI in ionic liquid,7d
FO2SCF2CF2OCF2CO2Me/CuI,7e CF3Br/copper anode,7f
and Me3SiCF3/N-heterocyclic carbeneꢀCu complexes.7g,h
Although all the reported works describe the trifluoro-
methylation of benzyl halides, substrate generality is
unexplored.7 As part of our ongoing research programs
directed toward the development of efficient electrophilic
trifluoromethyl reagents,8 and methodologies for the intro-
duction of the trifluoromethyl group,9 we hypothesized
that benzyl bromides would reacted with [CuCF3] gener-
ated in situ from the reduction of electrophilic trifluoro-
methylating reagents. We have started our work, during
which time trifluoromethylations of aromatic ring (sp2
carbon) using shelf-stable electrophilic trifluoromethylat-
ing reagents such as (trifluoromethyl)diphenylsulfonium
salt were successively disclosed.10 However, no example
was reported for the trifluoromethyaltion at the benzylic
position (sp3 carbon). We herein report the copper-mediated
chemoselective trifluoromethylation reaction of a series of
benzyl bromides through in situ generated [CuCF3] species
from shelf-stable electrophilic trifluoromethylating reagents
311 and copper (Scheme 1). Reactive functional groups such as
ester, ketone, and imide are well retained under the condition,
while they are reacted under the conventional nucleophic
trifluoromethylation condition. To the best of our knowledge,
this is the first example for trifluoromethylation of benzyl
bromides using electrophilic trifluoromethylating reagents.
Scheme 1. Copper-Mediated Trifluoromethylation of Benzyl
Bromides with Electrophilic Trifluoromethylating Reagents
(3) (a) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969, 10, 4095.
(b) Mcloughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 5921.
(c) Matsui, K.; Tobita, E.; Ando, M.; Kondo, K. Chem. Lett. 1981,
10, 1719. (d) Kitazume, T.; Ishikawa, N. Chem. Lett. 1982, 137.
(e) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832.
(f) Cottet, F.; Schlosser, M. Eur. J. Org. Chem. 2002, 327. (g) Schlosser,
M. Angew. Chem., Int. Ed. 2006, 45, 5432. (h) Grushin, V. V.; Marshall,
W. J. J. Am. Chem. Soc. 2006, 128, 12644. (i) Oishi, M.; Kondo, H.;
Amii, H. Chem. Commun. 2009, 1909. (j) Cho, E. J.; Senecal, T. D.;
Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328,
1679. (k) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc.
2010, 132, 2878. (l) Ye, Y.; Ball, N. D.; Kampf, J. W.; Sanford, M. S.
J. Am. Chem. Soc. 2010, 132, 14682. (m) Wang, X. S.; Truesdale, L.; Yu,
J. Q. J. Am. Chem. Soc. 2010, 132, 3648. (n) Lundgren, R. J.; Stradiotto,
M. Angew. Chem., Int. Ed. 2010, 49, 9322. (o) Senecal, T. D.; Parsons,
A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174. (p) Chu, L.; Qing,
F.-L. Org. Lett. 2010, 12, 5060. (q) Knauber, T.; Arikan, F.;
€
Roschenthaler, G.-V.; Goosssn, L. J. Chem.;Eur. J. 2011, 17, 2689.
(r) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2011, 50, 3793.
We started our investigation with the reaction of
4-nitrobenzylbromide (1a) with a series of electrophilic
trifluoromethylating reagents 3 in the presenceofcopper in
DMF at 60 °C (Table 1). First, the trifluoromethylation of
1a with our trifluoromethylsulfoxinium salt 3a was at-
tempted; however, it gave a disappointing result, and only
a trace amount of desired product 2a was obtained (entry 1).
(4) (a) Yagupolskii, L. M. Dokl. Akad. Nauk SSSR 1955, 105, 100.
(b) Yarovenko, N. N.; Vasileva, A. S. A. S. Zh. Obshch. Khim. 1958, 28,
2502. (c) Yagupolskii, L. M.; Orda, V. V. Zh. Obshch. Khim. 1961, 31,
915. (d) Feiring, A. E. J. Org. Chem. 1979, 44, 2907. (e) Langlois, B.;
ꢀ
Desbois, M. Ann. Chim. Fr. 1984, 9, 729. (f) Salome, J.; Mauger, C.;
Brunet, S.; Schanen, V. J. Fluorine Chem. 2004, 125, 1947. (g) Leroux, F.;
Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827. (h) Umemoto, T.;
Adachi, K.; Ishihara, S. J. Org. Chem. 2007, 72, 6905. (i) Stanek, K.;
Koller, R.; Togni, A. J. Org. Chem. 2008, 73, 7678. (j) Koller, R.; Stanek,
K.; Stolz, D.; Aardoom, R.; Niedermann, K.; Koller, R.; Togni, A.
Angew. Chem., Int. Ed. 2009, 48, 4332.
(5) (a) Boiko, V. N.; Shchupak, G. M.; Yagupolskii, L. M. J. Org.
Chem.USSR 1977, 13, 972. (b) McClinton, M. A.; McClinton, D. A.
Tetrahedron 1992, 48, 6555. (c) Umemoto, T.; Ishihara, S. J. Am. Chem.
Soc. 1993, 115, 2156. (d) Billard, T.; Roques, N.; Langlois, B. R. J. Org.
Chem. 1999, 64, 3813. (e) Blond, G.; Billard, T.; Langlois, B. R.
Tetrahedron Lett. 2001, 42, 2473. (f) Tyrra, W.; Naumann, D.; Hoge,
B.; Yagupolskii, Y. L. J. Fluorine Chem. 2003, 119, 101. (g) Pooput, C.;
Medebielle, M.; Dolbier, W. R., Jr. Org. Lett. 2004, 6, 301. (h) Pooput,
C.; Dolbier, W. R., Jr.; Medebielle, M. J. Org. Chem. 2006, 71, 3564.
(i) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed. 2007,
46, 754.
(6) In a SciFinder search (accessed May 2011), more than 10000
(trifluoroethyl)arenes were registered with a biological purpose.
(7) (a) Kobayashi, Y.; Yamamoto, K.; Kumadaki, I. Tetrahedron Lett.
1979, 20, 4071. (b) Kondratenko, N. V.; Vechirko, E. P.; Yagupolskii, L. M.
Synthesis 1980, 11, 932. (c) Urata, H.; Fuchikami, T. Tetrahedron Lett.
1991, 32, 91. (d) Kim, J.; Shreeve, J. M. Org. Biomol. Chem. 2004, 2, 2728.
(e) Chen, Q.-Y.; Duan, J.-X. J. Chem. Soc., Chem. Commun 1993, 18, 1389.
(8) (a) Noritake, S.; Shibata, N.; Nakamura, S.; Toru, T.; Shiro, M.
Eur. J. Org. Chem. 2008, 3465. (b) Matsnev, A.; Noritake, S.; Nomura,
Y.; Tokunaga, E.; Nakamura, S.; Shibata, N. Angew. Chem., Int. Ed.
2010, 49, 572. (c) Nomura, Y.; Tokunaga, E.; Shibata, N. Angew. Chem.,
Int. Ed. 2011, 50, 1885.
(9) (a) Mizuta, S.; Shibata, N.; Sato, T.; Fujimoto, H.; Nakamura, S.;
Toru, T. Synlett 2006, 2, 267. (b) Mizuta, S.; Shibata, N.; Ogawa, S.;
Fujimoto, H.; Nakamura, S.; Toru, T. Chem. Commun. 2006, 2575.
(c) Mizuta, S.; Shibata, N.; Hibino, M.; Nagano, S.; Nakamura, S.;
Toru, T. Tetrahedron 2007, 63, 8521. (d) Mizuta, S.; Shibata, N.; Akiti,
S.; Fujimoto, H.; Nakamura, S.; Toru, T. Org. Lett. 2007, 9, 3707.
(e) Kawai, H.; Kusuda, A.; Mizuta, S.; Nakamura, S.; Funahashi, Y.;
Masuda, H.; Shibata, N. J. Fluorine Chem. 2009, 130, 762. (f) Kawai, H.;
Kusuda, A.; Nakamura, S.; Shiro, M.; Shibata, N. Angew. Chem., Int.
Ed. 2009, 48, 6324. (g) Noritake, S.; Shibata, N.; Nomura, Y.; Huang, Y.;
Matsnev, A.; Nakamura, S.; Toru, T.; Cahard, D. Org. Biomol. Chem.
2009, 7, 3599. (h) Kawai, H.; Tachi, K.; Tokunaga, E.; Shiro, M.; Shibata,
N. Org. Lett. 2010, 12, 5104.
ꢀ
ꢀ
ꢀ
(f) Paratian, J. M.; Labbe, E.; Sibille, S.; Perichon, J. J. Organomet. Chem.
1995, 489, 137. (g) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am.
Chem. Soc. 2008, 130, 8600. (h) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A.
Organometallics 2008, 27, 6233.
(10) (a) Zhang,C.-P.;Wang,Z.-L.;Chen,Q.-Y.;Zhang,C.-T.;Gu,Y.-C.;
Xiao, J.-C. Angew. Chem., Int. Ed. 2011,50, 1896. (b) Xu, J.; Luo, D.-F.; Xiao,
B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300.
(c) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
Org. Lett., Vol. 13, No. 14, 2011
3597