10.1002/ejoc.201901395
European Journal of Organic Chemistry
COMMUNICATION
2H), 6.40 (d, J = 10.0 Hz, 2H), 2.35 (s, 3H); 13C NMR (126 MHz,
CDCl3) δ 161.5, 149.3, 143.2, 139.2, 133.6, 132.0, 131.3, 130.9,
130.8, 130.0, 129.8, 128.8, 128.7, 127.7, 127.6, 127.5, 127.1, 126.5,
125.3, 124.8, 120.3, 21.6; IR (neat) 3415, 1516, 1182 cm-1; HRMS
(EI-TOF) calcd for C29H20ClNO2 449.1183, found 449.1185.
Wengryniuk, A. Weickgenannt, C. Reiher, N. A. Strotman, K. Chen,
M. D. Eastgate, P. S. Baran, Org. Lett. 2013, 15, 792; c) Y. M. You,
S. Y. Park, J. Am. Chem. Soc. 2005, 127, 12438; d) L. Kumar, T.
Mahajan, D. D. Agarwal, Green Chem. 2011, 13, 2187; e) J.
Tummatorn, P. Poonsilp, P. Nimnual, J. Janprasit, C.
Thongsornkleeb, S. Ruchirawat. J. Org. Chem. 2015, 80, 4516.
[8] a) X. Ma, J. Yu, M. Jiang, M. Wang, L. Tang, M. Wei, Q. Zhou, Eur. J.
Org. Chem. 2019, 4593;b) Z. Huo, I. D. Gridnev, Y. Yamamoto, J.
Org. Chem. 2010, 75, 1266; c) X. Zhang, T. Yao, M. A. Campo, R.
C. Larock, Tetrahedron. 2010, 66, 1177; d) K. O. Hessian, B. L.
Flynn, Org. Lett. 2006, 8, 243; e) X. Zhang, M. A. Campo, T. Yao,
R. C. Larock, Org. Lett. 2005, 7, 763.
(2-bromoethene-1,1-diyl)dibenzene (7): Amorphous solid, 19 mg,
36% yield; 1H NMR (500 MHz, CDCl3) δ 7.40 (t, J = 7.0 Hz, 2H), 7.36
(d, J = 7.0 Hz, 1H), 7.29 (dd, J = 8.0, 6.0 Hz, 5H), 7.21 (dd, J = 6.0,
2.8 Hz, 2H), 6.77 (s, 1H); 13C NMR (126 MHz, CDCl3) δ 146.9, 140.8,
139.1, 129.7, 128.5, 128.3, 128.2, 128.0, 127.7, 105.2; IR (neat)
2452, 1705, 920 cm-1; HRMS (EI-TOF) calcd for C14H11Br 258.0044,
found 258.0054.
[9] For selected reviews, see: a) P. Sivaguru, Z. Wang, G. Zanoni, X. Bi,
Chem. Soc. Rev. 2019, 48, 2615; b) F. Wang, P. Chen, G. Liu, Acc.
Chem. Res. 2018, 51, 2036; c) M. Huang, W. Hao, G. Li, S. Tu, B.
Jiang, Chem. Commun. 2018, 54, 10791; d) S. Tang, K. Liu, C. Liu,
A. Lei, Chem. Soc. Rev. 2015, 44, 1070; e) Z. Chen, X. Xiao, Y. Tu,
Chem. Soc. Rev. 2015, 44, 5220; f) J. Chen, X. Yu, W. Xiao,
Synthesis. 2015, 47, 604; g) U. Wille, Chem. Rev. 2013, 113, 813.
[10] a) B. Liu, J. Cheng, Y. Li, J. Li, Chem. Commun. 2019, 55, 667; b) Q.
Sun, N. Yoshikai, Org. Lett. 2019, 21, 5238; c) L. Li, Y. Li, Z. Zhao,
H. Luo, Y. Ma, Org. Lett. 2019, 21, 5995; d) H. Zhang, W. Li, C.
Zhu, J. Org. Chem. 2017, 82, 2199; e) Y. An, J. Zhang, H. Xia, J.
Wu, Org. Chem. Front. 2017, 4, 1318; f) D. Xia, Y. Li, T. Miao, P. Li,
L. Wang, Chem. Commun. 2016, 52, 11559; g) W. Zhang, F. Wang,
S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu, Science.
2016, 353, 1014; h) L. Yu, Y. Wei, M. Shi, Chem. Commun. 2016,
52, 13163.
Acknowledgements
This work was supported by the Natural Science Foundation of
Shandong Province (No. ZR2018BB029, No. ZR2019PB004), and
National Natural Science Foundation of China (21772067).
Conflict of interest
The authors declare no conflict of interest.
[11] a) S. Ye, D. Zheng, J. Wu, G. Qiu, Chem. Commun. 2019, 55, 2214;
b) R. Wang, S. Yuan, J. Liu, J. Wu, G. Qiu, Org. Biomol. Chem.
2018, 16, 4501; c) S.-T. Yuan, H. Zhou, L. Gao, J.-B. Liu, G. Qiu,
Org. Lett., 2018, 20, 562; d) R. Liu, M. Li, W. Xie, H. Zhou, Y.
Zhang, G. Qiu, J. Org. Chem. 2019, 84, 11763
Keywords: tandem radical cyclization • halogen radical • 3-
haloquinolines • alkynyl imines • regioselective synthesis
[1] a) D. Chandra, A. K., Dhiman, R. Kumar, U. Sharma, Eur. J. Org.
Chem. 2019, 2753; b) A. Teichert, J. Schmidt, A. Porzel, N. Arnold,
L. Wessjohann, J. Nat. Prod. 2008, 71, 1092; c) L. M. Nogle, W. H.
Gerwick, J. Nat. Prod. 2003, 66, 217.
[12] a) S. Feng, J. Li, Z. Liu, H. Sun, H. Shi, X. Wang, X. Xie, X. She, Org.
Biomol. Chem. 2017, 15, 8820; b) G. Qiu, T. Liu, Q. Ding, Org.
Chem. Front. 2016, 3, 510; c) U. Dutta, A. Deb, D. Lupton, D. Maiti,
Chem. Commun. 2015, 51, 17744; d) K. Moriyama, Y. Nakamura,
H. Togo, Org. Lett. 2014, 16, 3812.
[2] a) J. Aziz, S. Messaoudi, M. Alami, A. Hamze, Org. Biomol. Chem.
2014, 12, 9743; b) A. P. Gorka, A. Dios, P. D. Roepe, J. Med.
Chem. 2013, 56, 5231; c) V. R. Solomon, H. Lee, Curr. Med. Chem.
2011, 18, 1488; d) V. V. Kouznetsov, L. Y. Mendez, C. M. Gomez,
Curr. Org. Chem. 2005, 9, 141.
[13] For a dual-functional synthon, see: a) C. Wu, Z. Wang, Z. Hu, F.
Zeng, X.-Y. Zhang, Z. Cao, Z. Tang, W.-M. He, X.-H. Xu, Org.
Biomol. Chem. 2018, 16, 3177; b) L. –Y. Xie, S. Peng, F. Liu, J.-Y.
Yi, M. Wang, Z. Tang, X. Xu, W.-M. He Adv. Synth. Catal. 2018,
360, 4259; c) C. Wu, L.-H. Lu, A. –Z. Peng, G.-K. Jia, C. Peng, Z.
Cao, Z. Tang, W.-M. He, X. Xu, Green. Chem. 2018, 20, 3683; d)
X. Gong, J. Chen, X. Li, W. Xie, J. Wu, Chem. Asian. J. 2018, 13,
2543; e) Y. Zhao, Y. Luo, Y. Zhu, H. Wang, H. Zhou, H. Tan, Z. Zhou,
Synlett 2018, 29, 773; f) Y.-H. Zhao, Y. Li, M. Luo, Z. Tang, K. Deng,
Synlett 2016, 27, 2597; g) Y. Zhao, Y. Li, T. Guo, Z. Tang, W. Xie, G.
Zhao, Tetrahedron Lett. 2016, 57, 2257; h) T. Guo, Y. Liu, Y.-H. Zhao,
P.-K. Zhang, S.-L. Han, H.-M. Liu, Tetrahedron Lett. 2016, 57, 4629; i)
T. Guo, Y. Liu, Y.-H. Zhao, P.-K. Zhang, S.-L. Han, H.-M. Liu,
Tetrahedron Lett. 2016, 57, 3920; j) L. Zhen, C. Fang, Y. Zheng, G.
Qiu, X. Li, H. Zhou, Tetrahedron Lett. 2018, 59, 3934; k) Y. Zong,
Y. Lang, M. Yang, X. Li, X. Fan, J. Wu, Org. Lett. 2019, 21, 1935; l)
Y.-C. Wang, R.-X. Wang, G. Qiu, H. Zhou, W. Xie, J.-B. Liu, Org.
Chem. Front. 2019, 6, 2471;
[3] a) D. Chen, X. Sun, Y. Shan, J. You, Org. Biomol. Chem. 2018, 16,
7657; b) F. Artizzu, M. L. Mercuri, A. Serpe, P. Deplano, Coord.
Chem. Rev. 2011, 255, 2514; c) B. Qian, P. Xie, Y. Xie, H. Huang,
Org. Lett. 2011, 13, 2580; d) Y. Tokoro, A. Nagai, K. Kokado, Y.
Chujo, Macromolecules. 2009, 42, 2988.
[4] a) L. Liu, D. Chen, J. Yao, Q. Zong, J. Wang, H. Zhou, J. Org. Chem.
2017, 82, 4625; b) X. Wang, X. Wang, D. Huang, C. Liu, X. Wang,
Y. Hu, Adv. Synth. Catal. 2016, 358, 2332; c) K. Sun, Y. Lv, J.
Wang, J. Sun, L. Liu, M. Jia, X. Liu, Z. Li, X. Wang, Org. Lett. 2015,
17, 4408; d) S. Ali, H. Zhu, X. Xia, K. Ji, Y. Yang, X. Song, Y. Liang,
Org. Lett. 2011, 13, 2598.
[5] a) P. Klumphu, B. H. Lipshutz, J. Org. Chem. 2014, 79, 888; b) A.
Piala, D. Mayi, S. T. Handy, Tetrahedron. 2011, 67, 4147; c) Y.
Kitamura, S. Sako, A. Tsutsui, Y. Monguchi, T. Maegawa, Y.
Kitade, H. Sajiki, Adv. Synth. Catal. 2010, 352, 718.
[14] a) D. Chen, Y. Shan, J. Li, J. You, X. Sun, G. Qiu, Org. Lett. 2019, 21,
4044; b) G. Ge, C. Ding, X. Hou, Org. Chem. Front. 2014, 1, 382; c)
G. Cheng, X. Cui, Org. Lett. 2013, 15, 1480.
[6] For regioselective synthesis of quinolines, see: a) H. Hwang,J. Kim, J.
Jeong, S. Chang, J. Am. Chem. Soc. 2014, 136, 10770; b) T.
Shirai, M. Kanai, Y. Kuninobu, Org. Lett. 2018, 20, 1593; c) V. E.
Murie, R. H. V. Nishimura, L. A. Rolim, R. Vessecchi, N. P. Lopes,
G. C. Clososki, J. Org. Chem. 2018, 83, 871; d) L. Li, W.-B. Liu, H.-
Y.Zeng, X.-Y. Mu, G. Cosa, Z.-T. Mi, C.-J. Li, J. Am. Chem. Soc.
2015, 137, 8328; e) W. Xie, Y. Wu, J. Zhang, Q. Mei, Y. Zhang, N.
Zhu, R. Liu, H. Zhang, Eur. J. Med. Chem. 2018, 145, 35
[15] a) Y. He, G. Qiu, Org. Biomol. Chem. 2017, 15, 3485. For advances
on oxone chemistry from other groups, see: b) G. Qiu, Z.-F. Chen,
W. Xie, H. Zhou, Eur. J. Org. Chem. 2019, 4327; c) Y. Zheng, M.
Liu, G. Qiu, W. Xie, J. Wu, Tetrahedron, 2019, 75, 1663; d) Y.-H.
Wang, G. Qiu, H. Zhou, W. Xie, J.-B. Liu, Tetrahedron, 2019, 75,
3850; e) Y.-H. Wang, B. Ouyang, G. Qiu, W. Xie, J.-B. Liu, Org.
Biomol. Chem., 2019, 17, 4335; f) L.-H. Lu, S.-J. Zhou, M. Sun, J.-
[7] a) I. Kazi, S. Guha, G. Sekar, J. Org. Chem. 2019, 84, 6642; b) S. E.
This article is protected by copyright. All rights reserved.