B. Chappell et al. / Tetrahedron Letters 52 (2011) 3223–3225
3225
Chem., Int. Ed. 2010, 49, 4451–4454; (c) Yao, T.; Hirano, K.; Satoh, T.; Miura, M.
Chem. Eur. J. 2010, 16, 12307–12311.
gations have so far not succeeded in elucidating the underlying
reasons for this surprising lack of reactivity. Our findings in this re-
spect are in line with previous work suggesting that these hetero-
cycles are difficult substrates for C–H activation chemistry.18
In conclusion we have demonstrated a method for the direct
alkenylation of 1,2-azoles.19 Regrettably, it has not so far been pos-
sible to extend the reaction scope beyond ring systems bearing
simple substituents. Furthermore, extension to less usual Heck
substrates (alkenes bearing sulfonyl, phosphonyl or phthalimido
substituents) has likewise been unsuccessful. While the electro-
philic palladation mechanism can be seen as a useful tool to under-
stand the reaction, further investigations are warranted to discover
if this pathway is genuinely operative in this case, and in the Fujiw-
ara–Moritani reaction more generally. It is to be hoped that such
mechanistic understanding will lead to better catalyst systems that
operate under milder conditions and across a broader range of
substrates.
6. Leading references for each metal are: For copper: (a) Boogaerts, I. I. F.;
Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P. Angew. Chem., Int. Ed.
2010, 49, 8674–8677; For gold: (b) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem.
Soc. 2010, 132, 8858–8859; For palladium: (c) Wu, X.-F.; Anbarasan, P.;
Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 7316–7319; Without
metal catalyst: (d) Vechorkin, O.; Hirt, N.; Hu, X. Org. Lett. 2010, 12, 3567–3569.
7. (a) Asano, R.; Moritani, I.; Fujiwara, Y.; Teranashi, S. Bull. Chem. Soc. Jpn. 1973,
45, 663–664; (b) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633–
639; Included in the review article: (c) Rossi, R.; Bellina, F.; Lessi, M. Synthesis
2010, 4131–4153.
8. (a) Fujiwara, Y.; Maruyama, O.; Yoshidomi, M.; Taniguchi, H. J. Org. Chem. 1981,
46, 851–855; For more recent catalytic work on thiophenes, see: (b) Maehara,
A.; Satoh, T.; Miura, M. Tetrahedron 2008, 64, 5982–5986.
9. Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1, 2097–2100.
10. Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int.
Ed. 2005, 44, 3125–3129.
11. Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J. Am. Chem. Soc. 2006, 128,
2528–2529.
12. (a) Itahara, T.; Ouesto, F. Synthesis 1984, 488–490; (b) Cheng, D.; Gallagher, T. C.
Org. Lett. 2009, 11, 2639–2641.
13. As part of an aromatic system: (a) Li, M.; Li, L.; Ge, H. Adv. Synth. Catal. 2010,
352, 2445–2449; Nonaromatic: (b) Ge, H.; Niphakis, M. J.; Georg, G. I. J. Am.
Chem. Soc. 2008, 130, 3708–3709.
Acknowledgements
14. Yang, Y.; Cheng, K.; Zhang, Y. Org. Lett. 2009, 11, 5606–5609.
15. Jiang, H.; Feng, Z.; Wang, A.; Liu, X.; Chen, Z. Eur. J. Org. Chem. 2010, 1227–1230.
16. Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2010, 75, 5421–
5424.
We thank Alexander Alex, Mark Andrews, David Blakemore,
Manuel Perez and Guy Lloyd-Jones (University of Bristol) for useful
discussions.
17. See especially Refs. 10,11.
18. Arylation of 1,3,5-trimethylpyrazole has been reported by (a) Fall, Y.; Doucet,
H.; Santelli, M. Synthesis 2010, 127–135; But it is noteworthy that the reaction
requires more forcing conditions than those reported by the same group for the
arylation of 3,5-dimethylisoxazole, for which see: (b) Fall, Y.; Reynaud, C.;
Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2009, 4041–4050; Pyrazoles have
successfully been arylated by exploiting the SEM group to enhance reactivity:
(c) Goikhman, R.; Jacques, T. L.; Sames, D. J. Am. Chem. Soc. 2009, 131, 3042–
3048; To our knowledge the only other report of arylation of C-H pyrazoles is
intramolecular: (d) Blaszykowski, C.; Aktoudianakis, E.; Alberico, D.; Bressy, C.;
Hulcoop, D. G.; Jafarpour, F.; Joushaghani, A.; Laleu, B.; Lautens, M. J. Org. Chem.
2008, 73, 1888–1897.
References and notes
1. For a review see: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174–238; Selected more recent developments: (b) Do, H.-Q.; Kashif Khan, R.
M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185–15192; (c) Liégault, B.;
Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826–
1834; (d) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733–
1736; (e) Jarfarpour, F.; Rahiminejadan, S.; Hazrati, H. J. Org. Chem. 2010, 75,
3109–3112; (f) Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J.; Wilson, J. E.
Org. Lett. 2010, 12, 3578–3581; (g) Roy, D.; Mom, S.; Beaupérin, M.; Doucet, H.;
Hierso, J.-C. Angew. Chem., Int. Ed. 2010, 49, 6650–6654.
19. Representative experimental procedure: To 3-methyl-5-phenylisoxazole
(100 mg, 0.63 mmol) was added Pd(OAc)2 (14 mg, 0.063 mmol) followed by
2. (a) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 2685–
2686; (b) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124,
13964–13965; (c) Tan, K. L.; Park, S.; Bergman, R. G.; Ellman, J. A. J. Org. Chem.
2004, 69, 7329–7335.
3. (a) Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128,
8146–8147; (b) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Heterocycles 2007, 72, 677–
680; (c) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448–
2449; (d) Kanyiva, K. S.; Löbermann, F.; Nakao, Y.; Hiyama, T. Tetrahedron Lett.
2009, 50, 3463–3466; (e) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am.
Chem. Soc. 2009, 131, 15996–15997; For a cobalt-catalysed version, see: (f)
Ding, Z.; Yoshikai, N. Org. Lett. 2010, 12, 4180–4183.
n-butyl acrylate (180 lL, 161 mg, 1.26 mmol) and DMA (2 ml). The mixture
was stirred at 120 °C for 8 h. The cooled reaction mixture was then partitioned
between dil. NH3(aq)/Et2O. The aqueous layer was re-extracted with Et2O. The
combined organic layers were washed with brine, dried over MgSO4 and
evaporated. The resulting brown oil was columned over silica (15 g) eluting
with PhMe. Relevant fractions were combined and evaporated to give the
product as a clear oil (99 mg, 0.35 mmol, 55%). 1H NMR (400 MHz, CDCl3) 0.90
(3H, t, J = 7.4 Hz), 1.36 (2H, m), 1.61 (2H, m), 2.43 (3H, s), 4.14 (2H, t, J = 6.8 Hz),
6.23 (1H, d, J = 16.3 Hz), 7.44–7.48 (3H, m), 7.60–7.63 (2H, m), 7.64 (1H, d,
J = 16.3 Hz). 13C NMR (100 MHz, CDCl3) 12.6, 14.0, 19.4, 31.0, 64.9, 111.3, 120.2,
125.6, 127.4, 128.3, 129.3, 131.0, 133.4, 159.1, 167.0, 169.5. MS (ESI): m/z 286
[M+1]+.
4. Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2096–2098. and
references therein..
20. Lin, Y.-I.; Lang, S. A., Jr. J. Org. Chem. 1980, 45, 4857–4860.
5. A recent review is provided, see: (a) Ackermann, L. Chem. Commun. 2010, 46,
4866–4877; (b) Nakao, Y.; Kashahira, N.; Kanyiva, K. S.; Hiyama, T. Angew.