C O M M U N I C A T I O N S
Table 2. a
ion 6 is expected to occur en route to pyrimidine derivative 3.16
The inhibitory effect of more nucleophilic base additives and excess
2-ClPyr in addition to the benefit of superstoichiometric quantities
of nitrile are consistent with the proposed mechanism.
We describe a single-step and convergent procedure for the
synthesis of pyrimidine derivatives. This chemistry is applicable
to a wide range of secondary amides and nitriles and allows for
unique transformations including that in eq 2. This methodology
not only alleviates the need for isolation of activated amide
derivatives but also does not require the additional use of stoichio-
metric Lewis acids.9 The use of this chemistry with sensitive and
epimerizable substrates is noteworthy and offers a valuable ad-
dendum to methodology for azaheterocycle synthesis.
Acknowledgment. M.M. is a Dale F. and Betty Ann Frey
Damon Runyon Scholar supported by the Damon Runyon Cancer
Research Foundation (Grant DRS-39-04). This study was supported
by NSF (Grant 547905). We acknowledge additional support by
Amgen, Firmenich, and Boehringer Ingelheim Pharmaceutical Inc.
Supporting Information Available: Experimental procedures and
spectroscopic data for all products. This material is available free of
References
(1) For reviews, see (a) Undheim, K.; Benneche, T. In ComprehensiVe
Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F.
V., McKillop, A., Eds.; Pergamon: Oxford, 1996; Vol. 6, p 93. (b) Lagoja,
I. M. Chem. BiodiVersity 2005, 2, 1. (c) Michael, J. P. Nat. Prod. Rep.
2005, 22, 627. (d) Joule, J. A.; Mills, K. In Heterocyclic Chemistry, 4th
ed.; Blackwell Science Ltd.: Cambridge, MA, 2000; p 194. (e) Erian, A.
W. Chem. ReV. 1993, 93, 1991.
(2) For representative reports, see (a) Sakai, N.; Youichi, A.; Sasada, T.;
Konakahara, T. Org. Lett. 2005, 7, 4705. (b) Yoon, D. S.; Han, Y.; Stark,
T. M.; Haber, J. C.; Gregg, B. T.; Stankovich, S. B. Org. Lett. 2004, 6,
4775. (c) Kakiya, H.; Yagi, K.; Shinokubo, H.; Oshima, K. J. Am. Chem.
Soc. 2002, 124, 9032. (d) Kotsuki, H.; Sakai, H.; Morimoto, H.; Suenaga
H. Synlett 1999, 1993. (e) Ghosez, L.; Jnoff, E.; Bayard, P.; Sainte, F.;
Beaudegnies, R. Tetrahedron 1999, 55, 3387. (f) Mart´ınez, A. G.;
Ferna´ndez, A. H.; Fraile, A. G.; Subramanian, L. R.; Hanack, M. J. Org.
Chem. 1992, 57, 1627.
(3) For reviews, see (a) Chinchilla, R.; Na´jera, C.; Yus, M. Chem. ReV. 2004,
104, 2667. (b) Turck, A.; Ple´, N.; Mongin, F.; Que´guiner, G. Tetrahedron
2001, 57, 4489.
(4) (a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. (b)
Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; p 1051.
(c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004, 248,
2337. (d) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973.
(5) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592.
(6) For elegant studies on the activation of amides using Tf2O and pyridine,
see (a) Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79, 1694. (b)
Charette, A. B.; Mathieu, S.; Martel, J. Org. Lett. 2005, 7, 5401.
(7) (a) Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J.
J. Am. Chem. Soc. 1997, 119, 6072. (b) Garcia, B. A.; Gin, D. Y. J. Am.
Chem. Soc. 2000, 122, 4269.
(8) Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000,
a Uniform conditions unless otherwise noted. Tf2O (1.1 equiv), 2-ClPyr
56, 3077.
(1.2 equiv), nitrile (1.1 equiv), CH2Cl2, heating: A ) 23 °C, 1 h; B ) 45
°C, 16 h; C ) microwave, 140 °C, 20 min. b Average of two experiments.
c 18 h. d An amount of 5 equiv of nitrile. e Gram-scale reaction. f Time )
1 h. g TBAF (1 equiv) used to desilylate the product. h An amount of 3
equiv of nitrile. i ee determined by chiral HPLC analysis of a derivative.
(9) For quinazoline syntheses requiring stoichiometric activation (with TiCl4,
AlCl3, or SnCl4) of imidoyl chloride derivatives, see (a) Zielinski, W.;
Kudelko, A. Monatsh. Chem. 2000, 131, 895. (b) Kofanov, E. R.; Sosnina,
V. V.; Danilova, A. S.; Korolev, P. V. Zh. Prik. Khim. 1999, 72, 813. (c)
Madron˜ero, R.; Vega, S. Synthesis 1987, 628.
(10) (a) The yield of entries 3 and 6 in Table 2 using condition B was 30 and
31%, respectively. (b) Absence of nitrile during activation of the amide
substrate in entry 18 of Table 2 afforded the product in 62% yield. (c)
The yield of entries 9, 17, 20, and 21 in Table 2 using 1.1 equiv of nitrile
was 56, 70, 56, and 37%, respectively.
Scheme 1
(11) See Supporting Information for details.
(12) The use of the N-4-methoxyphenyl variant of the amide in entry 21 of
Table 2 provided the corresponding quinazoline in 58% yield but with
complete racemization. Please see Supporting Information for details.
(13) Bose, D. S.; Jayalakshmi, B. Synthesis 1999, 64.
(14) The complete formation of 2a by treatment of 4 with Tf2O and 2-ClPyr
under the reaction conditions was confirmed independently.
(15) Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045.
(16) The conversion of 6 to 3 may be facilitated by net addition of
2-chloropyridinium triflate to the nitrilium ion.
1H, 13C, and 19F NMR resonances observed for the activated
intermediate prior to addition of the nitrile suggests equilibration
of 5 with the corresponding triflate adduct.11 Reversible addition
of nitrile15 and expulsion of 2-ClPyr‚HOTf to provide the nitrilium
JA066405M
9
J. AM. CHEM. SOC. VOL. 128, NO. 44, 2006 14255