consecutive fluorene subunits were present in the backbone. The
release of SWNTs after photoirradiation can be varied from
seconds to hours depending on the place and amount of photo-
cleavable moiety in the polymer backbone. To the best of our
knowledge, this is the first study involving controlled precipitation
of solubilized (n,m) enriched semiconducting SWNTs.
We are currently investigating the role of the polymer length
for its dispersing features and we are screening potential
recognition templates for SWNTs.
We thank Peter Gerstel and Christopher Barner-Kowollik
for SEC measurements. We also acknowledge ongoing generous
support by the DFG Center for Functional Nanostructures
(CFN), by the Helmholtz Programme POF NanoMikro,
by the Karlruhe Institute of Technology (KIT) and by the
University of Basel.
Fig. 2 Suspension 7c (a) before and (b) after 2 min irradiation
showing the precipitation of the enriched (n,m) SWNTs.
polymer photodegradation are still able to stabilize the SWNTs.
In a hypothetical full cleavage of all o-nitrobenzylether subunits,
the polymer 6c would release trimers, which are not long enough
to stabilize SWNTs. The polymer 6d on the other hand releases
longer oligomers also, which presumably are able to stabilize
SWNTs. It is worth noting that all these suspensions were stable
for at least 2 months in the dark.
Notes and references
1 S. Reich, C. Thomsen and J. Maultzsch, Carbon Nanotubes: Basic
Concepts and Physical Properties, Wiley-VCH, Weinheim, 2004;
M. J. O’Connell, Carbon Nanotubes: Properties and Applications,
CRC Press Taylor & Francis Group, Boca Raton FL, 2006;
P. M. Anjayan, Chem. Rev., 1999, 99, 1787.
The precipitated (n,m) enriched SWNTs from suspensions
7c and 7d were collected by centrifugation. TEM images of
SWNTs from suspension 7d displayed residual polymer coating
wrapped arround the tube (Fig. S8, ESIw). The SWNTs from
suspension 7c were washed several times with toluene using a
mild sonication bath. The TEM images in Fig. 3 show bundles
of SWNTs due to their strong p–p stacking interactions. The
close contact between the tubes points at least to partial removal
of the polymer at their surfaces.
2 M. Moniruzzaman and K. I. Winey, Macromolecules, 2006, 39, 5194.
3 M. Hersam, Nat. Nanotechnol., 2008, 3, 387.
4 Using DNA: X. Tu, S. Manohar, A. Jagota and M. Zheng, Nature,
2009, 460, 250.
5 Using small molecules: R. Marquis, C. Greco, I. Sadokierska,
S. Lebedkin, M. M. Kappes, T. Michel, L. Alvarez, J.-L. Sauvajol,
S. Meunier and C. Mioskowski, Nano Lett., 2008, 8, 1830; A. S. F.
M. Rahman, F. Wang, K. Matsuda, T. Kimura and N. Komatsu,
Chem. Sci., 2011, 2, 862–867.
6 Using non-linear DGU: S. Gosh, S. M. Bachilo and
R. B. Weisman, Nat. Nanotechnol., 2010, 5, 443.
In conclusion, polymers composed of 9,9-dialkylfluorenes as
a SWNT selecting template and o-nitrobenzylether as a photo-
cleavable linker were designed, synthesized and their SWNT
dispersing features were analyzed. Copolymers of both subunits
with HiPco SWNT selecting properties comparable with
poly(9,9-dialkyl)fluorenes were obtained as soon as at least three
7 Using polymers: (a) N. Sturzl, F. Hennrich, S. Lebedkin and
¨
M. M. Kappes, J. Phys. Chem. C, 2009, 113, 14628;
(b) F. A. Lemasson, T. Strunk, P. Gerstel, F. Hennrich, S. Lebedkin,
C. Barner-Kowollik, W. Wenzel, M. M. Kappes and M. Mayor,
J. Am. Chem. Soc., 2011, 133, 652; (c) J.-Y. Hwang, A. Nish,
J. Doig, S. Douven, C. W. Chen, L.-C. Chen and R. J. Nicholas,
J. Am. Chem. Soc., 2008, 130, 3543; (d) F. Cheng, P. Imin,
C. Maunders, G. Botton and A. Adronov, Macromolecules, 2008,
41, 2304; (e) A. Nish, J.-Y. Hwang, J. Doig and R. J. Nicholas, Nat.
Nanotechnol., 2007, 2, 640; (f) N. Berton, F. Lemasson, J. Tittmann,
N. Sturzl, F. Hennrich, M. M. Kappes and M. Mayor, Chem. Mater.,
¨
2011, 23, 2237.
8 J. Opatkiewicz, M. C. LeMieux and Z. Bao, ACS Nano, 2010, 4, 2975.
9 T. Umeyama, K. Kawabata, N. Tezuka, Y. Matano, Y. Miyota,
K. Matsuhige, M. Tsujimoto, S. Isoda, M. Takano and
H. Imahori, Chem. Commun., 2010, 46, 5969.
10 Z. Zhang, Y. Che, R. A. Smaldone, M. Xu, B. R. Bunes,
J. S. Moore and L. Zang, J. Am. Chem. Soc., 2010, 132, 14113.
11 J. T. Goldbach, T. P. Russell and J. Penelle, Macromolecules, 2002,
35, 4271; M. Kang and B. Moon, Macromolecules, 2009, 42, 455;
J.-M. Schumers, J.-F. Gohy and C.-A. Fustin, Polym. Chem., 2010,
1, 161.
12 J. A. Johnson, M. G. Finn, J. T. Koberstein and N. J. Turro, Macro-
molecules, 2007, 40, 3589; J. A. Johnson, J. M. Baskin, C. R. Bertozzi,
J. T. Koberstein and N. J. Turro, Chem. Commun., 2008, 3064.
13 C. G. Bochet, Tetrahedron Lett., 2000, 41, 6341.
14 H. Utsa, A. Facchetti and T. J. Marks, Org. Lett., 2008, 10, 1385.
15 S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge,
R. E. Smalley and R. B. Weisman, Science, 2002, 298, 2361;
R. B. Weisman and S. M. Bachilo, Nano Lett., 2003, 3, 1235;
S. Lebedkin, F. Hennrich, O. Kiowski and M. M. Kappes, Phys.
Rev. B: Condens. Matter Mater. Phys., 2008, 77, 165429.
16 For a study in aqueous solution, see: D. A. Tsyboulski, J.-D.
R. Rocha, S. M. Bachilo, L. Cognet and R. B. Weisman, Nano
Lett., 2007, 7, 3080, see also ESIw.
Fig. 3 TEM picture with enhancements of precipitated (n,m) enriched
semiconducting SWNTs from suspension 7c which formed bundles.
17 N. Karousis, N. Tagmatarchis and D. Tasis, Chem. Rev., 2010,
110, 5366.
c
7430 Chem. Commun., 2011, 47, 7428–7430
This journal is The Royal Society of Chemistry 2011