Table 3 Kumada–Tamao–Corriu cross-coupling of arylchlorides
catalyzed by [Ni(cod)2]/1a
exceptionally robust. Further studies are aimed at the discovery
of other catalytic reactions exploiting the supramolecular
potential of calixarenyl-monophosphines.
[Ni(cod)2]
(mol%)
Reaction
time/h
Conversion
(%)
This work was supported by the French ANR (Program
MATCALCAT) and University Louis Pasteur (grant to LM).
Entry
ArCl
1
2
1
3
98.5
37.4
0.01
16
Notes and references
3
4
1
3
99.6
42.2
1 W. A. Herrmann, in Homogeneous Catalysis with
Organometallic Compounds, ed. B. Cornils and W. A. Herrmann,
Wiley-VCH, Weinheim, 2002, 2nd edn, p. 91.
0.01
16
2 Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and
F. Diederich, Wiley-VCH, Weinheim, 2004.
3 A. Zapf and M. Beller, Chem. Commun., 2005, 431.
4 J.-P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651.
5 R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461.
5
6
1
1
1
5
24.6
75.4
6 B. D. Sherry and A. Furstner, Acc. Chem. Res., 2008, 41, 1500.
¨
7
8
1
1
5
97.9
69.2
7 Y. Fu, Acc. Chem. Res., 2008, 41, 1555.
8 P. Styring and A. I. R. Parracho, Beilstein J. Org. Chem., 2009, 5,
29.
0.01
9 R. J. P. Corriu and J. P. Masse, J. Chem. Soc., Chem. Commun.,
1972, 144.
10 K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 1972,
94, 4374.
11 M. Kumada, Pure Appl. Chem., 1980, 52, 669.
12 K. Tamao, J. Organomet. Chem., 2002, 653, 23.
13 Modern Organonickel Chemistry, ed. Y. Tamaru, Wiley-VCH,
Weinheim, 2005.
14 C. Barnard, Platinum Met. Rev., 2008, 52, 38.
15 K. G. Moloy and J. E. Marcone, J. Am. Chem. Soc., 1998, 120,
8527.
9
1
1
5
99.2
60.3
10
0.01
a
Conditions: [Ni(cod)2], monophosphine
1 (2 equiv./Ni), ArCl
(0.25 mmol), PhMgBr (0.5 mmol), dioxane (0.75 mL), decane
(0.025 mL), 100 1C. The conversions were determined by GC, the
calibrations being based on decane. At 100 1C, the nitro group did not
undergo nucleophilic attack.
16 P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek and
P. Dierkes, Chem. Rev., 2000, 100, 2741.
17 J.-C. Hierso, R. Smaliy, R. Amardeil and P. Meunier, Chem. Soc.
Rev., 2007, 36, 1754.
Table 4 Kumada–Tamao–Corriu cross-coupling of aryl chlorides in
the presence of monophosphines 1 and 6 at 25 1Ca
18 V. P. W. Bohm, C. W. K. Gstottmayr, T. Weskamp and
Monophosphine
¨
W. A. Herrmann, Angew. Chem., Int. Ed., 2001, 40, 3387.
¨
1
6
Entry
1
ArCl
19 V. P. W. Bohm, T. Weskamp and C. W. K. Gstottmayr, Angew.
¨
Chem., Int. Ed., 2000, 39, 1602.
¨
20 L. Ackermann, R. Born, J. H. Spatz and D. Meyer, Angew. Chem.,
Int. Ed., 2005, 44, 7216.
´
21 L. Monnereau, D. Semeril, D. Matt and L. Toupet, Chem.–Eur. J.,
2010, 16, 9237.
22 J. Yin, M. P. Rainka, X.-X. Zhang and S. L. Buchwald, J. Am.
Chem. Soc., 2002, 124, 1162.
23 M. Miura, Angew. Chem., Int. Ed., 2004, 43, 2201.
24 T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald,
J. Am. Chem. Soc., 2005, 127, 4685.
25 F. Barrios-Landeros and J. F. Hartwig, J. Am. Chem. Soc., 2005,
127, 6944.
conv. (%) (6 h)
conv. (%) (6 h)
72.2
88.2
2
3
66.7
92.3
conv. (%) (24 h)
conv. (%) (24 h)
62.5
45.2
80.9
64.4
4
26 H. Ohta, M. Tokunaga, Y. Obora, T. Iwai, T. Iwasawa,
T. Fujihara and Y. Tsuji, Org. Lett., 2007, 9, 89.
27 Z. Li, Y. Fu, Q.-X. Guo and L. Liu, Organometallics, 2008, 27,
4043.
28 D. J. M. Snelders, G. van Koten and R. J. M. Klein Gebbink,
J. Am. Chem. Soc., 2009, 131, 11407.
a
Conditions: [Ni(cod)2] (7.5 Â 10À3 mmol, 3 mol%), monophosphine
(2 equiv./Ni), ArCl (0.25 mmol), PhMgBr (0.5 mmol), dioxane (0.75 mL),
decane (0.025 mL), 25 1C. Conversions determined by GC; calibra-
tions based on decane. At 25 1C, neither the cyano nor the nitro groups
were found to undergo nucleophilic attack.
29 Z. Li, S.-L. Zhang, Y. Fu, Q.-X. Guo and L. Liu, J. Am. Chem.
Soc., 2009, 131, 8815.
30 S. Sameni, C. Jeunesse, D. Matt and L. Toupet, Chem.–Eur. J.,
2009, 15, 10446.
31 S. Sameni, C. Jeunesse, D. Matt and R. Welter, Dalton Trans.,
2009, 7912.
32 Employing 1 equiv. of 1 led to comparable yields; the use of 2
equiv. of phosphine provided a higher catalyst stability. See ESIw.
´
33 L. Monnereau, D. Semeril, D. Matt, L. Toupet and A. J. Mota,
Adv. Synth. Catal., 2009, 351, 1383.
34 C. Baillie, W. Chen and J. Xiao, Tetrahedron Lett., 2001, 42, 9085.
35 It has been proposed that in Ni-catalysed KTC coupling, formation
of a metal–haloarene Z2-complex precedes the oxidative addition
step: see N. Yoshikai, H. Matsuda and E. Nakamura, J. Am. Chem.
Soc., 2008, 130, 15258–15259.
manner in the cavity. The resulting orientation of the P–M
bond in this complex, turned towards the calixarene axis
(and not outwards), should artificially increase the ligand bulk,
and incidentally favour the formation of a mono-ligand Ni(0)
intermediate.
In summary, we have reported the first examples of highly
efficient Kumada–Tamao–Corriu cross-coupling reactions
carried out by combining a nickel centre with a triaryl mono-
phosphine. The systems described are particularly easy to
handle as the reported calixarene-phosphines are chemically
c
6628 Chem. Commun., 2011, 47, 6626–6628
This journal is The Royal Society of Chemistry 2011