Organometallics
ARTICLE
3.83 (m, 1H, J = 7 Hz, CH(CH3)2), 4.02 (s, 1H, NCCH2), 5.38 (s, 1H,
γꢀCH), 6.69 (br, 1H, C6H2), 6.86 (br, 1H, C6H2), 6.98ꢀ7.14 (m, 6 H,
2 x iPr2C6H3) ppm. 29Si{1H} NMR (79.49 MHz, C6D6, 25 °C):
δ ꢀ49.36 ppm. EIꢀMS: m/z 664.4 (M+).
Sons: NewYork, 1999; Vol. 2, Part 3, pp 2463ꢀ2568. (b) Nagendran,
S.; Roesky, H. W. Organometallics 2008, 27, 457–492. (c) Gehrhus, B.;
Lappert, M. F. J. Organomet. Chem. 2001, 617ꢀ618, 209–223. (d) Haaf,
M.; Schmedake, T. A.; West, R. Acc. Chem. Res. 2000, 33, 704–714.
(e) Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2011, 111, 354–396.
(f) Yao, S.; Xiong, Y.; Driess, M. Organometallics 2011, 30, 1748–1767.
(g) Hill, N. J.; West, R. J. Organomet. Chem. 2004, 689, 4165–4183.
(2) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.;
Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc.
1994, 116, 2691–2692.
(3) (a) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Angew.
Chem. 2006, 118, 4052–4054; Angew. Chem. 2006, 45, 3948ꢀ3950.
(b) Sen, S. S.; Roesky, H. W.; Stern, D.; Henn, J.; Stalke, D. J. Am.
Chem. Soc. 2010, 132, 1123–1126. (c) Driess, M.; Yao, S.; Brym, M.;
van W€ullen, C.; Lentz, D. J. Am. Chem. Soc. 2006, 128, 9628–9629.
(d) Kong, L.; Zhang, J.; Song, H.; Cui, C. Dalton Trans 2009,
39, 5444–5446.
Synthesis of 4. n-Hexane (60 mL) was placed in a 100 mL Schlenk
flask containing L0 (0.24 g, 0.54 mmol) and acylferrocene (0.12 g, 0.53
mmol). The orange red colored reaction mixture was stirred at room
temperature for 12 h. The solution was filtered, and the solvent was
reduced in vacuo to 40 mL and stored in a freezer at ꢀ32 °C for 12 h to
obtain reddishꢀorange colored single crystals of 4; (0.26 g, 72%); mp
212ꢀ215 °C (decomp). Elemental analysis (%) calcd for C41H52FeN2OSi
(672.79): C, 73.19; H, 7.79; N, 4.16. Found: C, 72.85; H, 7.89; N, 4.00. 1H
NMR (300 MHz, C6D6, 25 °C): δ 1.02 (d, 3H, J = 7 Hz, CH(CH3)2), 1.06
(d, 3H, J = 7 Hz, CH(CH3)2), 1.26ꢀ1.29 (2d, 6H, 2 ꢁ CH(CH3)2), 1.30
(d, 3H, J = 7 Hz, CH(CH3)2), 1.44 (d, 3H, J = 7 Hz, CH(CH3)2), 1.49
(s, 3H, NCCH3), 1.52 (d, 3H, J = 7 Hz, CH(CH3)2), 1.56 (d, 3H, J = 7 Hz,
CH(CH3)2), 2.83 (d, 1H, J = 2 Hz, CdCH2), 3.11 (m, 1H, C5H4), 3.40
(m, 1H, J = 7 Hz, CH(CH3)2), 3.45 (s, 1H, NCCH2), 3.54 (m, 2H,
CH(CH3)2, C5H4), 3.72(m, 1H, C5H4), 3.78 (m, 1H, C5H4), 3.84 (m, 2H,
J = 7 Hz, 2 ꢁ CH(CH3)2), 3.90 (s, 5H, C5H5), 4.02 (s, 1H, NCCH2), 4.26
(d, 1H, J = 2 Hz, CdCH2), 5.28 (s, 1H, SiH), 5.35 (s, 1H, γꢀCH),
6.97ꢀ7.30 (m, 6 H, 2 ꢁ iPr2C6H3) ppm. 29Si{1H} NMR (59.62 MHz,
C6D6, 25 °C): δ ꢀ51.25 ppm. EIꢀMS: m/z 672 (M+).
(4) (a) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D.
Angew. Chem. 2009, 121, 5793–5796; Angew. Chem., Int. Ed. 2009, 48,
5683ꢀ5686. (b) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem.
Soc. 1999, 121, 9722–9723.
(5) (a) Nolan, S. P. In N-Heterocyclic Carbenes in Synthesis; Wiley-
VCH: Weinheim, Germany, 2006. (b) Glorius, F. In N-Heterocyclic
Carbenes in Transition Metal Catalysis; Springer-Verlag: Berlin, 2007.
(c) Clavier, H.; Nolan, S. P. Annu. Rep. Prog. Chem., Sect B: Org. Chem.
2007, 103, 193–222. (d) Weskamp, T.; B€ohm, V. P. W.; Herrmann,
W. A. J. Organomet. Chem. 2000, 600, 12–22. (e) Jafarpour, L.; Nolan,
S. P. Adv. Organomet. Chem. 2000, 46, 181–222. (f) Harrold, N. D.;
Waterman, R.; Hillhouse, G. L.; Cundari, T. R. J. Am. Chem. Soc. 2009,
Crystal Structure Determination. Suitable single crystals for
Xꢀray structural analysis of 1, 2, 3, and 4 were mounted at low temperature
in inert oil under argon atmosphere by applying the X-Temp2 device.25 The
data were collected on a Bruker D8 three circle diffractometer equipped
with a SMART APEX II CCD detector and an INCOATEC Mo micro-
focus source with INCOATEC Quazar mirror optics.26 The data were
integrated with SAINT,27 and an empirical absorption correction with
SADABS28 was applied. The structures were solved by direct methods
(SHELXS-97) and refined against all data by full-matrix least-squares
methods on F2 (SHELXL-97).29 All non-hydrogen-atoms were refined
with anisotropic displacement parameters. The hydrogen atoms were
refined isotropically on calculated positions using a riding model with their
Uiso values constrained to 1.5 Ueq of their pivot atoms for terminal sp3
carbon atoms and 1.2 times for all other carbon atoms (Table 1).
ꢀ
131, 12872–12873. (g) Fustier, M.; Goff, F. L.; Floch, P. L.; Mdzailles, N.
J. Am. Chem. Soc. 2010, 132, 13108–13110. (h) Zimmerman, P. M.; Paul, A.;
Musgrave, C. B. Inorg. Chem. 2009, 48, 5418–5433. (i) Groysman, S.; Holm,
R. H. Inorg. Chem. 2009, 48, 621–627. (j) Phillips, E. M.; Riedrich, M.;
Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 13179–13181. (k) Catalano, V. J.;
Moore, A. L.; Shearer, J.; Kim, J. Inorg. Chem. 2009, 48, 11362–11375. (l)
Mathew, J.; Suresh, C. H. Inorg. Chem. 2010, 49, 4665–4669. (m) Smith,
J. M.; Long, J. R. Inorg. Chem. 2010, 49, 11223–11230.
(6) (a) Mills, D. P.; Soutar, L.; Lewis, W.; Blake, A. J.; Liddle, S. T.
J. Am. Chem. Soc. 2010, 132, 14379–14381. (b) Yang, C.-H.; Beltran, J.;
Lemaur, V.; Cornil, J.; Hartmann, D.; Sarfert, W.; Fr€ohlich, R.; Bizzari,
C.; Cola, L. D. Inorg. Chem. 2010, 49, 9891–9901. (c) Park, H.-J.; Kim,
K. H.; Choi, S. Y.; Kim, H.-M.; Lee, W. I.; Kang, Y. K.; Chung, Y. K. Inorg.
Chem. 2010, 49, 7340–7352. (d) Crees, R. S.; Cole, M. L.; Hanton, L. R.;
Sumby, C. J. Inorg. Chem. 2010, 49, 1712–1719. (e) Lee, Y.; Li, B.;
Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 11625–11633. (f) Sinha, A.;
Rahaman, S. M. W.; Sarkar, M.; Saha, B.; Daw, P.; Bera, J. K. Inorg. Chem.
2009, 48, 11114–11122. (g) Dash, C.; Shaikh, M. M.; Butcher, R. J.;
Ghosh, P. Inorg. Chem. 2010, 49, 4972–4983. (h) Fu, C.-F.; Lee, C.-C.;
Liu, Y.-H.; Peng, S.-M.; Warsink, S.; Elsevier, C. J.; Chen, J.-T.; Liu, S.-T.
Inorg. Chem. 2010, 49, 3011–3018. (i) Naeem, S.; Delaude, L.; White,
A. J. P.; Wilton-Ely, J. D. E. T. Inorg. Chem. 2010, 49, 1784–1793.
(j) Zhang, W.-Q.; Whitwood, A. C.; Fairlamb, I. J. S.; Lynam, J. M. Inorg.
Chem. 2010, 49, 8941–8952. (k) Huang, F.; Lu, G.; Zhao, L.; Wang, Z.-X.
J. Am. Chem. Soc. 2010, 132, 12388–12396. (l) Hsieh, C.-H.;
Darensbourg, M. Y. J. Am. Chem. Soc. 2010, 132, 14118–14125.
(7) (a) Li, R.-E.; Sheu, J.-H.; Su, M.-D. Inorg. Chem. 2007,
46, 9245–9253. (b) Bharatam, P. V.; Moudgil, R.; Kaur, D. Organome-
tallics 2002, 21, 3683–3690. (c) Bharatam, P. V.; Moudgil, R.; Kaur, D.
Inorg. Chem. 2003, 42, 4743–4749.
’ ASSOCIATED CONTENT
S
Supporting Information. CIFs for 1(CCDCꢀ824154),
b
2(CCDCꢀ824155), 3(CCDCꢀ824156), and 4(CCDCꢀ824157).
This material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: hroesky@gwdg.de (H.W.R.); dstalke@chemie.
uni-goettingen.de (D.S.).
’ ACKNOWLEDGMENT
We are thankful to the Deutsche Forschungsgemeinschaft for
supporting this work. R.A. is grateful to the Alexander von Humboldt
Stiftung for a research fellowship. D.S. and J.H. are grateful to the
DNRF funded Center for Materials Crystallography (CMC) for
support and the Land Niedersachsen for providing a fellowship in the
Catalysis of Sustainable Synthesis (CaSuS) PhD program.
(8) (a) Xiong, Y.; Yao, S.; Driess, M. Chem.—Eur. J. 2009,
15, 5545–5551. (b) Yao, S.; van W€ullen, C.; Sun, X.-Y.; Driess, M.
Angew. Chem. 2008, 120, 3294–3297; Angew. Chem., Int. Ed. 2008 47,
3250ꢀ3253.
(9) (a) Meltzer, A.; Inoue, S.; Pr€asang, C.; Driess, M. J. Am. Chem.
Soc. 2010, 132, 3038–3046. (b) Jana, A.; Schulzke, C.; Roesky, H. W.
J. Am. Chem. Soc. 2009, 131, 4600–4601. (c) Jana, A.; Roesky, H. W.;
Schulzke, C.; Samuel, P. P. Organometallics 2009, 28, 6574–6577.
’ REFERENCES
(1) (a) Gaspar, P. P.; West, R. In The Chemistry of Organic Silicon
Compounds, 2nd ed.; Rappoport, Z., Apeloig, Y., Eds.; John Wiley and
3857
dx.doi.org/10.1021/om200388a |Organometallics 2011, 30, 3853–3858