The Journal of Organic Chemistry
NOTE
compound 19. After the mixture was cooled to room temperature, most
of EtOH was removed under reduced pressure. The residue was diluted
with EtOAc and water. The aqueous solution was neutralized with 1 M
NaOH solution. The mixture was extracted with EtOAc for three times.
The combined organic layers were dried over anhydrous Na2SO4,
concentrated, and purified by flash chromatography (EtOAc/hexanes =
1/1) to give 13 (406.8 mg, 73%) as a yellow solid.
’ ASSOCIATED CONTENT
S
Supporting Information. General experimental informa-
b
tion and spectra for all new compounds. This material is available
’ AUTHOR INFORMATION
(S)-Methyl 3-(N-(6-Acetylnaphthalen-2-yl)-2-nitrophenyl-
sulfonamido)-2-(tritylamino)propanoate 12. To a solution of
13 (555.7mg, 3mmol) inCH2Cl2 (30mL) wereaddedpyridine(0.27mL,
3.3 mmol) and o-NsCl (698.1 mg, 3.15 mmol) sequentially at 0 °C. The
reaction was stirred at room temperature overnight. The reaction mixture
was washed with 1 M HCl solution (20 mL), water, and brine and dried
over Na2SO4. The solution was concentrated, and the resulting red solid
was dissolved in toluene (30 mL) and stirred at 0 °C. To this mixture were
added 11 (2.169 g, 6 mmol) and PPh3 (1.574 g, 6 mmol). DIAD (1.18 mL,
6 mmol) was added dropwise to the solution. The reaction mixture was
stirred overnight at room temperature. The solution was concentrated and
purified by flash chromatography (EtOAc/hexanes = 2/3) to give compound
12 (1.892 g, 88%) as a red solid. Rf = 0.28 (EtOAc/hexanes = 1/1).
1H NMR (500 MHz, CDCl3): δ = 8.43 (s, 1H), 8.06 (dd, J = 8.5, 1.5 Hz,
1H), 7.89 (d, J = 9.0 Hz, 1H), 7.88 (s, 1H), 7.60 (dd, J = 8.0, 1.5 Hz, 1H),
7.56 (dt, J = 8.0, 1.0 Hz, 1H), 7.45 (dd, J = 8.5, 2.0 Hz, 1H), 7.42 (dd, J =
8.0, 1.0 Hz, 1H), 7.33ꢀ7.29 (m, 1H), 7.28ꢀ7.26 (m, 6H), 7.11ꢀ7.05 (m,
9H), 4.36 (dd, J = 15.0, 4.5 Hz, 1H), 4.29 (dd, J = 14.5, 7.0 Hz, 1H), 3.53
(br s, 1H), 3.16 (s, 3 H), 2.72 (s, 3H), 2.66 (br s, 1H); 13C NMR (125
MHz, CDCl3): δ = 197.8, 173.0, 145.5, 138.6, 135.7, 135.4, 133.9, 132.3,
131.8, 131.7, 131.2, 131.0, 129.7, 128.8, 128.69, 128.66, 128.0, 127.9, 127.0,
126.5, 125.0, 124., 71.4, 56.7, 56.6, 52.0, 26.9. HRMS (ESI-FT):
[M + Na]+ calcd for C41H35N3O7SNa, 736.2089; found 736.2086.
[R]23D +69.6 (c 1.00, CHCl3).
(S)-Methyl 3-(6-Acetylnaphthalen-2-ylamino)-2-amino-
propanoate 20. To a solution of 12 (1.428 g, 2 mmol) in CH2Cl2
(16 mL) were added TFA (2.0 mL) and water (2.0 mL) at 0 °C. The
reaction mixture was stirred at room temperature for 3 h and concen-
trated under vacuum. The residue was dissolved in DMF (10 mL).
Thiophenol (440.4 mg, 4.0 mmol) and K2CO3 (2.76 g, 20 mmol) were
added to the solution sequentially. The reaction mixture was stirred at
room temperature for 2 h. Water (80 mL) was added to the mixture, and
the solution was extracted with EtOAc (40 mL) three times. The
combined organic phase was washed with brine (40 mL), dried over
Na2SO4, and filtered. The filtrate was concentrated and purified by flash
chromatography (EtOAc/hexanes = 1/1, then MeOH/MeOH = 1/20)
to give compound 20 (459.6 mg, 80%) as a yellow solid. Rf = 0.15
(MeOH/CH2Cl2 = 1/20). 1H NMR (500 MHz, CDCl3): δ = 8.29 (s,
1 H), 7.92 (dd, J = 9.0, 2.0 Hz, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.61 (d, J =
8.5 Hz, 1H), 6.95 (dd, J = 8.5, 2.0 Hz, 1H), 6.84 (d, J = 2.0 Hz, 1H), 4.75
(br s, 1H), 3.82 (br s, 1H), 3.78 (s, 3H), 3.65ꢀ3.63 (m, 1H), 3.35 (dd,
J = 12.0, 7.5 Hz, 1H), 2.66 (s, 3H), 1.70 (br s, 2H); 13C NMR (125 MHz,
CDCl3): δ = 197.9, 147.9, 138.0, 131.2, 131.0, 130.4, 126.3, 126.2,
124.9, 118.9, 104.4, 53.6, 52.5, 46.9, 26.5. HRMS (ESI-FT): [M + H]+
calcd for C16H19N2O3, 287.1390; found 287.1395. [R]24D +74.0 (c 1.00,
CHCl3).
Corresponding Author
*E-mail: lwang@salk.edu
’ ACKNOWLEDGMENT
We thank Dr. Michael Burkart, Mr. Christopher Vickery, and
Dr. Jing Xu for help with the HRMS and optical rotation
measurements. This work was supported by the March of Dimes
Foundation (5-FY08-110), California Institute for Regenerative
Medicine (RN1-00577-1), and National Institutes of Health
(1DP2OD004744-01).
’ REFERENCES
(1) Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G. Science 2001,
292, 498.
(2) Wang, L.; Schultz, P. G. Angew. Chem., Int. Ed. 2005, 44, 34.
(3) Wang, Q.; Parrish, A. R.; Wang, L. Chem. Biol. 2009, 16, 323.
(4) Liu, C. C.; Schultz, P. G. Annu. Rev. Biochem. 2010, 79, 413.
(5) Summerer, D.; Chen, S.; Wu, N.; Deiters, A.; Chin, J. W.;
Schultz, P. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9785.
(6) Wang, Q.; Wang, L. J. Am. Chem. Soc. 2008, 130, 6066.
(7) Wang, W.; Takimoto, J. K.; Louie, G. V.; Baiga, T. J.; Noel, J. P.;
Lee, K. F.; Slesinger, P. A.; Wang, L. Nat. Neurosci. 2007, 10, 1063.
(8) Wang, J.; Xie, J.; Schultz, P. G. J. Am. Chem. Soc. 2006, 128, 8738.
(9) Lee, H. S.; Guo, J.; Lemke, E. A.; Dimla, R. D.; Schultz, P. G.
J. Am. Chem. Soc. 2009, 131, 12921.
(10) Tsien, R. Y. Angew. Chem., Int. Ed. 2009, 48, 5612.
(11) Lee, J. S.; Kim, Y. K.; Vendrell, M.; Chang, Y. T. Mol. Biosyst.
2009, 5, 411.
(12) Brun, M. P.; Bischoff, L.; Garbay, C. Angew. Chem., Int. Ed.
2004, 43, 3432.
(13) Gilchrist, T. L.; Roberts, T. G. J. Chem. Soc., Perkin Trans. 1
1983, 1283.
(14) Gilchrist, T. L.; Lemos, A. Tetrahedron 1992, 48, 7655.
(15) Li, J.-R.; Zhang, G. J. Chem. Crystallogr. 2005, 35, 789.
(16) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995,
36, 6373.
(17) Swamy, K. C.; Kumar, N. N.; Balaraman, E.; Kumar, K. V.
Chem. Rev. 2009, 109, 2551.
(18) Kan, T.; Fukuyama, T. Chem Commun (Cambridge, U. K.)
2004, 353.
(19) Cherney, R. J.; Wang, L. J. Org. Chem. 1996, 61, 2544.
(20) Cabri, W.; Candiani, I.; Bedeschi, A.; Santi, R. J. Org. Chem.
1990, 55, 3654.
(21) Cabri, W.; Candiani, I.; Bedeschi, A.; Penco, S.; Santi, R. J. Org.
Chem. 1992, 57, 1481.
(22) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.
(23) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.
(24) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108,
3054.
(25) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
124, 7421.
L-Anap 3. A solution of compound 16 (286.3 mg, 1 mmol) in 2 M
HCl solution (10 mL) was stirred at 60 °C for 8 h. The reaction mixture
was lyophilized to give a yellow solid. After being washed with diethyl ether,
the solid was dried under vacuum to give L-Anap (306.8 mg, 99%) as a
yellow solid. 1H NMR (500 MHz, D2O): δ = 7.82 (s, 1H), 7.45 (dd, J =
8.5, 2.0 Hz, 1H), 7.39 (d, J= 8.5 Hz, 1H), 7.32 (d, J= 8.5 Hz, 1H), 6.87 (dd,
J = 8.5, 2.0 Hz, 1H), 6.71 (s, 1H), 3.53ꢀ3.51 (m, 1H), 3.47 (dd, J = 13.0,
4.5 Hz, 1H), 3.23 (dd, J = 13.0, 7.0 Hz, 1H); 13C NMR (125 MHz, DMSO-
d6): δ = 197.1, 169.5, 148.0, 137.6, 130.5, 130.4, 130.2, 125.7, 125.5, 124.1,
119.0, 102.9, 51.5, 42.9, 26.4. HRMS (ESI-FT): [M + H]+ calcd for
C15H17N2O3, 273.1234; found 273.1239. [R]25D +74.2 (c 1.07, DMSO).
(26) Seeboth, H. Angew Chem., Int. Ed. 1967, 6, 307.
(27) Kim, H. M.; Kim, B. R.; An, M. J.; Hong, J. H.; Lee, K. J.; Cho,
B. R. Chem.ꢀEur. J. 2008, 14, 2075.
(28) Mizuno, M.; Yamano, M. Org. Lett. 2005, 7, 3629.
(29) Burkart, D. J.; McKenzie, A. R.; Nelson, J. K.; Myers, K. I.; Zhao,
X.; Magnusson, K. R.; Natale, N. R. Org. Lett. 2004, 6, 1285.
6370
dx.doi.org/10.1021/jo2007626 |J. Org. Chem. 2011, 76, 6367–6371