Journal of the American Chemical Society
ARTICLE
Chem. 1987, 52, 1161. (d) Gevorgyan, V.; Radhakrishnan, U.; Takeda,
A.; Rubina, M.; Rubin, M.; Yamamoto, Y. J. Org. Chem. 2001, 66, 2835.
(e) Kakeya, M.; Fujihara, T.; Kasaya, T.; Nagasawa, A. Organometallics
2006, 25, 4131. (f) Orian, L.; van Stralen, J. N. P.; Bickelhaupt, F. M.
Organometallics 2007, 26, 3816.
(18) It was demonstrated that the computational results from
(U)B3LYP and CISD, CASSCF, and full CI differ by less than 5 kcal/
mol.17 However, the results from (U)B3LYP calculations are very
reliable for understanding reaction mechanisms and reproducing the
experimentally observed regio- and stereoselectivities.
(3) (a) Sch€aer, W. Angew. Chem., Int. Ed. 1966, 5, 669. (b) Maitlis,
P. M. Acc. Chem. Res. 1976, 9, 93. (c) Jankovꢀa, S.; Draꢁcínskꢀy, M.;
Císaꢁrovꢀa, I.; Kotora, M. Eur. J. Org. Chem. 2008, 47.
(4) (a) Balasubramanian, K. K.; Selvaraj, S.; Venkataramani, P. S.
Synthesis 1980, 29. (b) Matsuda, K.; Nakamura, N.; Iwamura, H. Chem.
Lett. 1994, 1765.
(5) (a) Yang, J.; Verkade, J. G. J. Am. Chem. Soc. 1998, 120, 6834.
(b) Yang, J.; Verkade, J. G. Organometallics 2000, 19, 893.
(19) Calculations using larger basis sets show that the activation
energies of the dimerizations are higher by 4 kcal/mol than those using
the 6-31G(d) basis set, but the conclusions using the 6-31G(d) basis set
are the same as those obtained by using the 6-311þþG(d,p) basis set.
Therefore, we still prefer to use the results from the 6-31G(d) basis set.
The computed energy surfaces for the cyclotrimerizations using the
6-311þþG(d,p) basis set are given in the Supporting Information
(Figures S1 and S2).
ꢁ
(6) (a) Viehe, H. G.; Merꢀenyi, D.-I. R.; Oth, J. F. M.; Valange, P.
Angew. Chem., Int. Ed. 1964, 3, 746. (b) Viehe, H. G.; Merꢀenyi, D.-I. R.;
Oth, J. F. M.; Senders, J. R.; Valange, P. Angew. Chem., Int. Ed. 1964,
3, 755. (c) Ballester, M.; Castaner, J.; Riera, J.; Tabernero, I. J. Org. Chem.
1986, 51, 1413. (d) Hopf, H.; Witulski, B. Pure Appl. Chem. 1993, 65, 47.
(e) Hanamoto, T.; Koga, Y.; Kawanami, T.; Furuno, H.; Inanaga, J.
Angew. Chem., Int. Ed. 2004, 43, 3582. (f) Taniguchi, S.; Yokoi, T.;
Izuoka, A.;Matsushita, M. M.; Sugawara, T.Tetrahedron Lett. 2004, 45, 2671.
(7) Bertholet, M. C. R. Seances Acad. Sci. 1866, 905.
(20) The basis set superposition errors (BSSE) are small using the
6-31G(d) basis set and can be completely neglected using the
6-311þþG(d,p) basis set. See these results in the Supporting Informa-
tion (Table S3).
(21) (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161. (b) Gonzalez, C.;
Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. (c) Gonzalez, C.; Schlegel,
H. B. J. Phys. Chem. 1990, 94, 5523.
(22) Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem. Phys.
Lett. 1988, 149, 537.
(8) (a) Wagenseller, P. E.; Birney, D. M.; Roy, D. J. Org. Chem. 1995,
60, 2853. (b) Jiao, H.; Schleyer, P. v. R. J. Phys. Org. Chem. 1998, 11, 655.
(c) Morao, I.; Cossío, F. P. J. Org. Chem. 1999, 64, 1868.
(23) French, A. D.; Kelterer, A.-M.; Johnson, G. P.; Dowd, M. K.;
Cramer, C. J. J. Comput. Chem. 2001, 22, 65.
(24) For theoretical studies of similar isomerizations, see:
(a) Johnson, R. P.; Daoust, K. J. J. Am. Chem. Soc. 1996, 118, 7381.
(b) Norton, J. E.; Olson, L. P.; Houk, K. N. J. Am. Chem. Soc. 2006,
128, 7835. (c) Draꢁcínskꢀy, M.; Casta~no, O.; Kotora, M.; Bouꢁr, P. J. Org.
Chem. 2010, 75, 576.
(25) (a) Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952,
20, 722.(b) Fleming, I. Molecular Orbitals and Organic Chemical Reac-
tions; John Wiley & Sons, Ltd.: Chichester, U.K., 2010.
(9) Viehe, H. G. Angew. Chem., Int. Ed. 1965, 4, 746.
(10) Hopf, H.; Mlynek, C.; McMahon, R. J.; Menke, J. L.; Lesarri, A.;
Rosemeyer, M.; Grabow, J.-U. Chem.—Eur. J. 2010, 16, 14115.
(11) (a) Helgeson, R. C.; Cram, D. J. J. Am. Chem. Soc. 1966, 88, 509.
(b) Arnett, E. M.; Sanda, J. C.; Bollinger, M. M.; Barber, M. J. Am. Chem.
Soc. 1967, 89, 5389. (c) Doyle, M. P.; West, C. T. J. Am. Chem. Soc. 1975,
97, 3777. (d) Lemal, D. M. J. Org. Chem. 2004, 69, 1.
(12) Very recently, Danheiser and co-workers discovered that the
intramolecular cyclotrimerization of alkynes occurs via a propagylic ene
reaction/[4þ2] reaction mechanism. See: (a) Robinson, J. M.; Sakai, T.;
Okano, K.; Kitawaki, T.; Danheiser, R. L. J. Am. Chem. Soc. 2010,
132, 11039. For the other studies, see: (b) Saaby, S.; Baxendale, I. R.;
Ley, S. V. Org. Biomol. Chem. 2005, 3, 3365. (c) Kral, K.; Hapke, M.
Angew. Chem., Int. Ed. 2011, 50, 2434.
(13) Hopf, H.; Witulski, B. In Modern Acetylene Chemistry; Stang, P. J.,
Diederich, F., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1995.
(14) Frisch, M. J.; et al. Gaussian 03, revision B.02; Gaussian, Inc.:
Pittsburgh, PA, 2003. Detailed citation can be found in the Supporting
Information.
(26) This difference is slightly reversed in the HOMO of 1a, perhaps
because of the strong interaction between the π-orbitals of the triple
bond and lone pairs of the fluorine (Table 2).
(27) (a) Maier, G.; Pfriem, S.; Sch€afer, U.; Matusch, R. Angew. Chem.,
Int. Ed. 1978, 17, 520. (b) Maier, G. Angew. Chem., Int. Ed. 1988, 27,
309.
(28) Maier, G.; Neudert, J.; Wolf, O.; Pappusch, D.; Sekiguchi, A.;
Tanaka, M.; Matsuo, T. J. Am. Chem. Soc. 2002, 124, 13819.
(29) (a) Limanto, J.; Tallarico, J. A.; Porter, J. R.; Khuong, K. S.;
Houk, K. N.; Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 14748.
(b) Limanto, J.; Khuong, K. S.; Houk, K. N.; Snapper, M. L. J. Am. Chem.
Soc. 2003, 125, 16310.
(15) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(16) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio
Molecular Orbital Theory; Wiley: New York, 1986.
(30) Getty, S. J.; Borden, W. T. J. Am. Chem. Soc. 1991, 113, 4334.
(31) In the traditional VB theory, the triplet energies are computed
on the basis of the ground state closed-shell geometry. However, this
traditional VB model cannot explain the different reactivities of halo-
acetylenes because chloroacetylenes have smaller singletꢀtriplet gaps
that fluoroacetylenes (see Table S9 of the Supporting Information). We
think that the traditional VB theory does not consider the distortion
energy in the transition state. Therefore, we called our explanation a
modified version of the VB theory, where the triplet energies in this
theory are computed on the optimized structures so that distortion
energies in the transition states can be taken into consideration. For
discussion of traditional VB theory, see: (a) Shaik, S.; Schlegel, H. B.;
Wolfe, S. In Theoretical Aspects of Physical Organic Chemistry; John Wiley
& Sons Inc.: New York, 1992. (b) Pross, A. In Theoretical and Physical
Principles of Organic Reactivity; John Wiley & Sons Inc.: New York, 1995.
For discussions of distortion energy in the transition state, see:
(c) Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10, 325.
(d) Nagase, S.; Morokuma, K. J. Am. Chem. Soc. 1978, 100, 1666. (e) Ess,
D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646. (f) de Jong, G. T.;
Bickelhaupt, F. M. ChemPhysChem 2007, 8, 1170. (g) Ess, D. H.; Houk,
K. N. J. Am. Chem. Soc. 2008, 130, 10187. (h) Bento, A. P.; Bickelhaupt,
F. M. J. Org. Chem. 2008, 73, 7290. (i) Xu, L.; Doubleday, C. E.; Houk,
K. N. Angew. Chem., Int. Ed. 2009, 121, 2784. (j) Braida, B.; Walter, C.;
Engels, B.; Hiberty, P. C. J. Am. Chem. Soc. 2010, 132, 7631.
(17) (a) Goldstein, E.; Beno, B.; Houk, K. N. J. Am. Chem. Soc. 1996,
118, 6036. (b) Wittbrodt, J. M.; Schlegel, H. B. J. Chem. Phys. 1996,
105, 6574. (c) Nendel, M.; Sperling, D.; Wiest, O.; Houk, K. N. J. Org.
Chem. 2000, 65, 3259. (d) Cremer, D.; Filatov, M.; Polo, V.; Kraka, E.;
Shaik, S. Int. J. Mol. Sci. 2002, 3, 604. (e) Zhang, D. Y.; Hrovat, D. A.;
Abe, M.; Borden, W. T. J. Am. Chem. Soc. 2003, 125, 12823. (f) Yu, Z.-X.;
Houk, K. N. J. Am. Chem. Soc. 2003, 125, 13825. (g) Yu, Z.-X.;
Caramella, P.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 15420.
(h) Abe, M.; Adam, W.; Borden, W. T.; Hattori, M.; Hrovat, D. A.;
Nojima, M.; Nozaki, K.; Wirz, J. J. Am. Chem. Soc. 2004, 126, 574.
(i) Zhao, Y.-L.; Suhrada, C. P.; Jung, M. E.; Houk, K. N. J. Am. Chem. Soc.
2006, 128, 11106. (j) Winter, A. H.; Falvey, D. E.; Cramer, C. J.;
Gherman, B. F. J. Am. Chem. Soc. 2007, 129, 10113. (k) Zhou, H.; Wong,
N. B.; Lau, K. C.; Tian, A.; Li, W. K. J. Phys. Chem. A 2007, 111, 9838.
(l) Leach, A. G.; Houk, K. N.; Foote, C. S. J. Org. Chem. 2008, 73, 8511.
(m) Penoni, A.; Palmisano, G.; Zhao, Y.-L.; Houk, K. N.; Volkman, J.;
Nicholas, K. M. J. Am. Chem. Soc. 2009, 131, 653. (n) Siebert, M. R.;
Osbourn, J. M.; Brummond, K. M.; Tantillo, D. J. J. Am. Chem. Soc. 2010,
132, 11952. (o) Lovitt, C. F.; Dong, H.; Hrovat, D. A.; Gleiter, R.;
Borden, W. T. J. Am. Chem. Soc. 2010, 132, 14617.
10876
dx.doi.org/10.1021/ja2021476 |J. Am. Chem. Soc. 2011, 133, 10864–10877