3360
Y. Tsukada et al. / Tetrahedron Letters 52 (2011) 3358–3360
6. Montagnat, O. D.; Lessene, G.; Hughes, A. B. Tetrahedron Lett. 2006, 47, 6971–
6974.
7. Nicholas, K. M.; Pettit, R. Tetrahedron Lett. 1971, 12, 3475–3478.
8. Teobald, B. J. Tetrahedron 2002, 58, 4133–4170.
9. Gómez, A. M.; Uriel, C.; Valverde, S.; López, J. C. Org. Lett. 2006, 8, 3187–3190.
10. (a) Lee, B.-Y.; Park, S. R.; Jeon, H. B.; Kim, K. S. Tetrahedron Lett. 2006, 47, 5105–
5109; (b) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.;
Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Folkin, V. V. Angew. Chem., Int. Ed.
2004, 43, 3928–3932; (c) Li, Y.; Huffman, J. C.; Flood, A. H. Chem. Commun.
2007, 26, 2692–2694; (d) Lee, J. W.; Kim, B.-K.; Kim, J. H.; Shin, W. S.; Jin, S.-H. J.
Org. Chem. 2006, 71, 4988–4991; (e) Li, Z.; Bittman, R. J. Org. Chem. 2007, 72,
8376–8382.
exhibited exactly the same enantiomeric purity as 2d (92% ee),
indicating that no epimerization took place during a series of reac-
tions for preparing triazolamers in the present procedure.
In conclusion, we have demonstrated a new strategy for the
synthesis of triazolamer using CPAs 2 as a monomeric synthetic
component. The cobalt complex has two different roles in our
method; one is the protection of alkynes, and the other is the
essential activating group for Nicholas reaction to prepare CPAs,
in part. The chain extension of triazolamer is conveniently attained
without racemization by iteration of reaction sequence of CuAAC
and oxidative deprotection. Further applications of our method
for preparation of various oligotriazoles are currently under
investigation.
11. General procedure for chain extension by use of CPA. Preparation of 5d as a typical
example. To
0.550 mmol) in CH2Cl2 (1.00 mL) were added an aqueous solution of
CuSO4ꢀ5H2O (0.200 M, 0.50 mL) and an aqueous solution of sodium
a solution of 4a (120 mg, 0.500 mmol) and 2d (251 mg,
L
-
ascorbate (1.3 M, 0.50 mL). The resulting solution was stirred for 1.5 h at
room temperature, and was diluted with CH2Cl2 and H2O. The organic layer
was separated and washed with brine, dried over Na2SO4, and concentrated
under vacuum. The crude mixture was dissolved in MeOH (5.0 mL) followed by
addition of CAN (1.51 g, 2.75 mmol), and then stirred for 5 min at room
temperature. The reaction mixture was extracted with CH2Cl2, and the
combined organic layers were washed with water, brine, dried over Na2SO4,
and concentrated under vacuum. The residue was purified by flash column
chromatography (hexane/EtOAc, 2:8) to give 5d (155 mg, 75% yield) as a white
solid. mp 168–170 °C. 1H NMR (400 MHz, CDCl3) d 7.81–7.76 (m, 2H), 7.67 (s,
1H), 7.56 (s, 1H), 7.54–7.39 (m, 3H), 7.25–7.19 (m, 3H), 7.04–6.98 (m, 2H), 6.85
(br s, 1H), 5.66 (ddd, J = 2.3, 5.5, 7.1 Hz, 1H), 5.60 (s, 2H), 4.72 (d, J = 5.5 Hz, 2H),
3.38 (dd, J = 5.5, 13.7 Hz, 1H), 3.34 (dd, J = 7.1, 13.7 Hz, 1H), 2.64 (d, J = 2.3 Hz,
1H); 13C NMR (100 MHz, CDCl3) d 167.3, 144.9, 141.0, 134.0, 133.9, 131.7,
129.5, 128.6, 128.5, 127.7, 127.0, 122.6, 122.3, 77.8, 77.2, 54.1, 45.4, 42.8, 35.4;
HR-MS m/z for C23H22N7O (M+H)+, calcd 412.1886, found 412.1876; IR (CHCl3)
References and notes
1. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–
2021; (b) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128–1137.
2. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2002, 41, 2596–2599; (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org.
Chem. 2002, 67, 3057–3064; (c) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108,
2952–3015.
3. Chow, H.-F.; Lau, K.-N.; Ke, Z.; Liang, Y.; Lo, C.-M. Chem. Commun. 2010, 46,
3437–3453.
4. (a) Bourne, Y.; Kolb, H. C.; Radic´, Z.; Sharpless, K. B.; Taylor, P.; Marchot, P. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 1449–1454; (b) Horne, W. S.; Yadav, M. K.;
Stout, C. D.; Ghadiri, M. R. J. Am. Chem. Soc. 2004, 126, 15366–15367; (c) Brik,
A.; Alexandratos, J.; Lin, Y. C.; Elder, J. H.; Olson, A. J.; Wlodawer, A.; Goodsell, D.
S.; Wong, C. H. ChemBioChem 2005, 6, 1167–1169; (d) Appendino, G.;
Bacchiega, S.; Minassi, A.; Cascio, M. G.; De Petrocellis, L.; Di Marzo, V.
Angew. Chem., Int. Ed. 2007, 46, 9312–9315.
5. (a) Angelo, N. G.; Arora, P. S. J. Am. Chem. Soc. 2005, 127, 17134–17135; (b)
Angelo, N. G.; Arora, P. S. J. Org. Chem. 2007, 72, 7963; (c) Jochim, A. L.; Miller, S.
E.; Angelo, N. G.; Arora, P. S. Bioorg. Med. Chem. Lett. 2009, 19, 6023–6026.
3297, 3001, 1658, 1521, 1053 cmꢁ1
.
12. Reginato, G.; Mordini, A.; Messina, F.; Degl’Innocenti, A.; Poli, G. Tetrahedron
1996, 52, 10985–10996.
13. Recently, an asymmetric Nicholas reaction has been reported (see: Ref. 14).
Unfortunately, however, an enantioselective preparation of CPAs by Nicholas
reaction has not appeared yet, to the best of our knowledge.
14. Ljungdahl, N.; Pera, N. P.; Andersson, K. H. O.; Kann, N. Synlett 2008, 394–398.