1008
F.-G. Sun, S. Ye
LETTER
Supporting Information for this article is available online at
O
CHO
Z1
Z2
CHO
N
••
NHC
S
Me
1
OH
Acknowledgment
3
Financial support from National Natural Science Foundation of
China (No. 21072195, 20932008) and the Chinese Academy of Sci-
ences is gratefully acknowledged.
aldol reaction
O
CHO
Z1
OH
S
–
Z2
S
Me
References and Notes
HO
Me
proton shift
N
N
(1) (a) DeSolms, S. J.; Woltersdorf, O. W. Jr.; Cragoe, E. J. Jr.;
Watson, L. S.; Fanelli, G. M. Jr. J. Med. Chem. 1978, 21,
437. (b) Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am.
Chem. Soc. 1984, 106, 446. (c) Sugimoto, H.; Iimura, Y.;
Yamanishi, Y.; Yamatsu, K. J. Med. Chem. 1995, 38, 4821.
(d) Yu, X. Y.; Finn, J.; Hill, J. M.; Wang, Z. G.; Keith, D.;
Silverman, J.; Oliver, N. Bioorg. Med. Chem. Lett. 2004, 14,
1343. (e) Ge, X.; Ye, G.; Li, P.; Tang, W.-J.; Gao, J.-L.;
Zhao, W.-M. J. Nat. Prod. 2008, 71, 227. (f) Das, L.;
Gupta, S.; Dasgupta, D.; Poddar, A.; Janik, M. E.;
Bhattacharyya, B. Biochemistry 2009, 48, 1628. (g) Sheng,
R.; Xu, Y.; Hu, C.; Zhang, J.; Lin, X.; Li, J.; Yang, B.; He,
Q.; Hu, Y. Eur. J. Med. Chem. 2009, 7. (h) Rizzo, S.;
Bartolini, M.; Ceccarini, L.; Piazzi, L.; Gobbi, S.; Cavalli,
A.; Recanatini, M.; Andrisano, V.; Rampa, A. Bioorg. Med.
Chem. 2010, 18, 1749.
(2) (a) Boger, D. L.; Jacobson, I. C. J. Org. Chem. 1990, 55,
1919. (b) Clive, D. L. J.; Sannigrahi, M.; Hisaindee, S.
J. Org. Chem. 2001, 66, 954. (c) Catino, A. J.; Nichols, J.
M.; Choi, H.; Gottipamula, S.; Doyle, M. P. Org. Lett. 2005,
7, 5167. (d) Kerr, D. J.; Hamel, E.; Jung, M. K.; Flynn, B. L.
Bioorg. Med. Chem. 2007, 15, 3290. (e) Yi, C. S.; Kwon,
K.-H.; Lee, D. W. Org. Lett. 2009, 11, 1567.
(3) (a) Rendy, R.; Zhang, Y.; McElrea, A.; Gomez, A.; Klumpp,
D. A. J. Org. Chem. 2004, 69, 2340. (b) Nishimoto, Y.;
Babu, S. A.; Yasuda, M.; Baba, A. J. Org. Chem. 2008, 73,
9465.
(4) (a) Cui, H.-F.; Dong, K.-Y.; Zhang, G.-W.; Wang, L.; Ma,
J.-A. Chem. Commun. 2007, 2284. (b) Saito, A.; Umakoshi,
M.; Yagyu, N.; Hanzawa, Y. Org. Lett. 2008, 10, 1783.
(5) (a) Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2002, 67,
9428. (b) Pletnev, A. A.; Larock, R. C. Tetrahedron Lett.
2002, 43, 2133.
A
O
stetter reaction
Z1
Z2
Z1
C
–
Z2
S
HO
2
N+
Me
B
Z2 = H – NHC
OH
Z1
O
Z1, Z2 = electron-withdrawing group
Scheme 3 Proposed catalytic cycle
the Michael acceptor facilitates the proton shift of the in-
termediate of the Stetter reaction and thus results in a
[4+1]-annulation product. This tandem reaction features
several advantages, including exclusive cis diastereose-
lectivity, readily available starting materials, and catalyst,
and construction of two C–C bonds in one pot, which
makes it potentially useful for the synthesis of the 3-hy-
droxyindanones.
Typical Procedure of the NHC-Catalyzed [4+1] Annulation
To an oven-dried 50 mL Schlenk tube equipped with a stir bar was
charged with thiazolium salt 4a (12.7 mg, 0.047 mmol) and phthal-
aldehyde (94.9 mg, 0.71 mmol). The tube was closed with a septum,
evacuated, and back-filled with argon. To this mixture was added
solvent THF (4.7 mL) and Michael acceptor 2a (96.3 mg, 0.47
mmol). Then, Cs2CO3 (15.4 mg, 0.047 mmol) was added to the
tube. The mixture was further stirred overnight, then diluted with
EtOAc and passed through a short silica pad. The solvent was re-
moved under reduced pressure, and the residue was purified by
chromatography on silica gel (EtOAc–PE, 1:3) to give 151.6 mg
(95%) of hydroxyindanone 3a as a white solid; Rf = 0.22 (PE–
(6) Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Pham, S. M.;
Zhang, L. J. Am. Chem. Soc. 2005, 127, 2836.
(7) Kundu, K.; McCullagh, J. V.; Morehead, A. T. Jr. J. Am.
Chem. Soc. 2005, 127, 16042.
(8) (a) Gagnier, S. V.; Larock, R. C. J. Am. Chem. Soc. 2003,
125, 4804. (b) Plíštil, L.; Šolomek, T.; Wirz, J.; Heger, D.;
Klán, P. J. Org. Chem. 2006, 71, 8050. (c) Senaiar, R. S.;
Teske, J. A.; Young, D. D.; Deiters, A. J. Org. Chem. 2007,
72, 7801. (d) Šolomek, T.; Štacko, P.; Veetil, A. T.; Pospíšil,
T.; Klán, P. J. Org. Chem. 2010, 75, 7300.
(9) (a) McMorris, T. C.; Kelner, M. J.; Wang, W.; Estes, L. A.;
Montoya, M. A.; Taetle, R. J. Org. Chem. 1992, 57, 6876.
(b) Nicolaou, K. C.; Montagnon, T.; Vassilikogiannakis, G.
Chem. Commun. 2002, 2478. (c) Goudreau, N.; Cameron,
D. R.; Déziel, R.; Haché, B.; Jakalian, A.; Malenfant, E.;
Naud, J. Bioorg. Med. Chem. 2007, 15, 2690.
(10) (a) Bowers, N. I.; Boyd, D. R.; Sharma, N. D.; Goodrich,
P. A.; Dalton, H. J. Chem. Soc., Perkin Trans. 1 1999, 1453.
(b) Moser, W. H.; Zhang, J.; Lecher, C. S.; Frazier, T. L.;
Pink, M. Org. Lett. 2002, 4, 1981. (c) Rebelo, S. L. H.;
Simões, M. M. Q.; Neves, M. G. P. M. S.; Silva, A. M. S.;
1
EtOAc, 3:1); mp 125–126 °C. H NMR (300 MHz, CDCl3): d =
8.05 (d, J = 7.2 Hz, 2 H), 7.87–7.83 (m, 2 H), 7.79–7.74 (m, 1 H),
7.63 (t, J = 7.2 Hz, 1 H), 7.57–7.48 (m, 3 H), 5.46 (s, 1 H), 4.33 (d,
J = 18.3 Hz, 1 H), 4.15–4.08 (m, 3 H), 3.53 (d, J = 18.3 Hz, 1 H),
1.11 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): d = 198.4,
198.3, 168.4, 153.5, 136.3, 135.8, 135.5, 133.7, 129.2, 128.7, 128.3,
125.2, 123.8, 76.4, 65.5, 62.1, 40.8, 13.8. IR (KBr): n = 1738, 1717,
1684, 1210. MS (EI): m/z (%) = 338 (3.0), 105 (100). HRMS (EI):
m/z [M+] calcd for C20H18O5: 338.1154; found: 338.1150.
Synlett 2011, No. 7, 1005–1009 © Thieme Stuttgart · New York