D
Y. Horino et al.
Letter
Synlett
bearing a triisopropylsilyl group in a vicinal position, for
example, (E)-triisopropyl[2-(tributylstannyl)vinyl]silane
reoselectivity. Additionally, in many cases, the present
method provides control of the alkene stereochemistry of
the newly formed C–C bond and overcomes the inherent
preference for (E)-alkene formation, giving (Z,E)- and (Z,Z)-
products.
(3f), failed in this three-component reaction, presumably as
a result of steric hindrance caused by the triisopropylsilyl
group. In addition, (E)-3-(tributylstannyl)prop-2-en-1-ol
(3g) and methyl (E)-3-(tributylstannyl)prop-2-enoate (3h)
did not engage in the present reaction; instead, a trace
amount of the palladium-catalyzed coupling product of bo-
ronate 2a with the vinylstannane 3 was observed.17
In an attempt to expand the scope of the vinylstannane,
the reaction was performed with the sterically encumbered
vinylstannane (Z)-3a (Scheme 3). However, a decreased
alkene stereoselectivity was observed for the newly formed
bond (Z/E = 8:1), and (Z,Z)-4aaa was obtained in 38% yield.
In this context, unreacted (Z)-3a was recovered without any
isomerization after the reaction.
Funding Information
This work was financially supported by JSPS KAKENHI Grant Number
JP15K05496.
J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
5
K
0
5
4
9
6)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
OH
Pd(OAc)2 (5 mol%)
PPh3 (10 mol%)
(Z/E)
Bu3Sn
OTBS
1a
+ 2a +
Ph
OTBS
(1) (a) Larsen, B. J.; Sun, Z.; Nagorny, P. Org. Lett. 2013, 15, 2998.
(b) Nagasawa, T.; Kuwahara, S. Org. Lett. 2013, 15, 3002.
(2) Wang, G.; Huang, Z.; Negishi, E. Org. Lett. 2008, 10, 3223.
(3) (a) Smith, A. B.; Ott, G. R. J. Am. Chem. Soc. 1996, 118, 13095.
(b) Smith, A. B.; Ott, G. R. J. Am. Chem. Soc. 1998, 120, 3935.
(c) Kim, Y.; Singer, R. A.; Carreira, E. M. Angew. Chem. Int. Ed.
1998, 37, 1261. (d) Fukuda, A.; Kobayashi, Y.; Kimachi, T.;
Takemoto, Y. Tetrahedron 2003, 59, 9305. (e) Yadav, J. S.; Kumar,
M. R.; Sabitha, G. Tetrahedron Lett. 2008, 49, 463.
(4) Gregg, C.; Gunawan, C.; Ng, A. W. Y.; Wimala, S.;
Wickremasinghe, S.; Rizzacasa, M. A. Org. Lett. 2013, 15, 516.
(5) Do, H.; Kang, C. W.; Cho, J. H.; Gilbertson, S. R. Org. Lett. 2015,
17, 3972.
(6) For reactions involving Sn, see: (a) Yanagisawa, A.; Nakashima,
H.; Ishiba, A.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 74, 1129.
(b) Nishigaichi, Y.; Hanano, Y.; Takuwa, A. Chem. Lett. 1998, 27,
33. (c) Yanagisawa, A.; Nakatsuka, Y.; Nakashima, H.;
Yamamoto, H. Synlett 1997, 933. (d) Nishigaichi, Y.; Fujimoto,
M.; Takuwa, A. Synlett 1994, 731. (e) Nishigaichi, Y.; Fujimoto,
M.; Takuwa, A. J. Chem. Soc., Perkin Trans. 1 1992, 2581. Si:
(f) Seyferth, D.; Pornet, J. J. Org. Chem. 1980, 45, 1721.
(g) Seyferth, D.; Pornet, J.; Weinstein, R. M. Organometallics
1982, 1, 1651. (h) Hosomi, A.; Saito, M.; Sakurai, H. Tetrahedron
Lett. 1980, 21, 3783. (i) Kobayashi, S.; Nishio, K. Chem. Lett.
1994, 23, 1773. (j) Hirashita, T.; Inoue, S.; Yamamura, H.; Kawai,
M.; Araki, S. J. Organomet. Chem. 1997, 549, 305. In: (k) Woo, S.;
Squires, N.; Fallis, A. G. Org. Lett. 1999, 1, 573. (l) Kwon, O.; Park,
S.; Schreiber, S. L. J. Am. Chem. Soc. 2002, 124, 13402. Zn:
(m) Jung, M. E.; Nichols, C. J. Tetrahedron Lett. 1996, 37, 7667.
Cr: (n) Sodeoka, M.; Yamada, H.; Shimizu, T.; Watanuki, S.;
Shibasaki, M. J. Org. Chem. 1994, 59, 712. Ti: (o) Okamoto, S.;
Sato, F. J. J. Organomet. Chem. 2001, 624, 151. (p) Zellner, A.;
Schlosser, M. Synlett 2001, 1016.
THF, 70 °C
Ph
(Z)-3a
(Z,Z)-4aaa, 38%, Z/E = 8:1
Scheme 3 Palladium-catalyzed three-component reaction of a (Z)-vi-
nylstannane
The scalability of this three-component reaction was
demonstrated by an experiment scaled up to a gram scale
of 2a, in which 4aaa was produced in 50% yield (Scheme 4).
OH
Pd(OAc)2 (5 mol%)
PPh3 (10 mol%)
(Z/E)
(E)
Ph
+
+
1a
2a
(5 mmol)
3a
Ph
THF
70 °C, 3 h
(2.4 equiv)
(1.5 equiv)
4aaa, 50%
Z/E = >20:1
OTBS
Scheme 4 A gram-scale reaction
Furthermore, to evaluate the usefulness of the hydroxy
and conjugated dienyl groups, a manipulation of the ho-
moallylic alcohol 4aaa obtained in this study was per-
formed (Scheme 5). A vanadium-catalyzed hydroxy-direct-
ed epoxidation reaction18 [VO(acac)2 (2 mol%), t-BuOOH] af-
forded epoxide syn-7 in 55% isolated yield (dr > 20:1).
OH
OH
O
VO(acac)2 (2 mol%)
t-BuOOH (2 equiv)
Ph
Ph
Ph
Ph
CH2Cl2
rt, 15 h
OTBS
OTBS
4aaa
7, 55%
Scheme 5 Hydroxy-directed epoxidation
(7) Hoffmann, R. W.; Schäfer, F.; Haeberlin, E.; Rohde, T.; Körber, K.
Synthesis 2000, 2060.
(8) (a) Koreeda, M.; Tanaka, Y. Chem. Lett. 1982, 11, 1299. (b) Marx,
A.; Yamamoto, H. Angew. Chem. Int. Ed. 2000, 39, 178.
(9) (a) Ratjen, L.; García-García, P.; Lay, F.; Beck, M. E.; List, B.
Angew. Chem. Int. Ed. 2011, 50, 754. (b) Curti, C.; Battistini, L.;
Sartori, A.; Lodola, A.; Mor, M.; Rassu, G.; Pelosi, G.; Zanardi, F.;
Casiraghi, G. Org. Lett. 2011, 13, 4738. (c) Curti, C.; Sartori, A.;
In conclusion, we have developed a diastereoselective
synthesis of (Z)-alkene-containing linear conjugated dienyl
homoallylic alcohols by using a palladium-catalyzed three-
component reaction of aldehydes, -borylated allylic ace-
tates, and vinylstannanes. This method shows good func-
tional-group compatibility and generality, with high diaste-
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–E