ORGANIC
LETTERS
2011
Vol. 13, No. 15
4088–4091
Total Synthesis of (ꢀ)-CP2-Disorazole C1
Chad D. Hopkins,† John C. Schmitz,#,§ Edward Chu,‡,§ and Peter Wipf*,†,§
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
United States, VACT Cancer Research Laboratory, VACT Healthcare System,
West Haven, Connecticut 06516, United States, Division of Hematology/Oncology,
Department of Medicine and University of Pittsburgh Cancer Institute, and Molecular
Therapeutics Drug Discovery Program, Pittsburgh, Pennsylvania 15232, United States
Received June 14, 2011
ABSTRACT
The total synthesis of a bis-cyclopropane analog of the antimitotic natural product (ꢀ)-disorazole C1 was accomplished in 23 steps and 1.1%
overall yield. A vinyl cyclopropane cross-metathesis reaction generated a key (E)-alkene segment of the target molecule. IC50 determinations of
(ꢀ)-CP2-disorazole C1 in human colon cancer cell lines indicated low nanomolar cytotoxic properties. Accordingly, this synthetic bioisostere
represents the first biologically active disorazole analog not containing a conjugated diene or polyene substructure element.
The disorazoles compromise a family of ∼30 closely
related polyketide microtubule disruptors isolated since
1994 from the fermentation broth of the myxobacterium
range against a variety of transformed cell lines, including
multidrug resistant cells.3 To date, only (ꢀ)-disorazole C1
has yielded to total synthesis,4 although several simplified
analogs and segments have been reported.5 As part of our
investigations of structureꢀactivity relationships (SAR) of
biologically active natural products,2d,6 we designed a
€
Sorangium cellulosum by Jansen, Reichenbach, Hofle and
co-workers.1,2 Members of the disorazole class have dis-
played anticancer activity in the nano- and picomolar
† Department of Chemistry, University of Pittsburgh.
# VACT Cancer Research Laboratory, VACT Healthcare System.
§ Molecular Therapeutics Drug Discovery Program Pittsburgh.
‡ Division of Hematology/Oncology, Department of Medicine and Uni-
versity of Pittsburgh Cancer Institute.
(4) Wipf, P.; Graham, T. H. J. Am. Chem. Soc. 2004, 126, 15346.
(5) (a) Schaeckel, R.; Hinkelmann, B.; Sasse, F.; Kalesse, M. Angew.
Chem., Int. Ed. 2010, 49, 1619. (b) Niess, B.; Hartung, I. V.; Haustedt,
L. O.; Hoffmann, H. M. R. Eur. J. Org. Chem. 2006, 1132. (c) Hearn,
B. R.; Arslanian, R. L.; Fu, H.; Liu, F.; Gramajo, H.; Myles, D. C. J.
Nat. Prod. 2006, 69, 148. (d) Haustedt, L. O.; Panicker, S. B.; Kleinert,
M.; Hartung, I. V.; Eggert, U.; Niess, B.; Hoffmann, H. M. R. Tetra-
hedron 2003, 59, 6967. (e) Hartung, I. V.; Eggert, U.; Haustedt, L. O.;
Niess, B.; Schaefer, P. M.; Hoffmann, H. M. R. Synthesis 2003, 1844. (f)
Hartung, I. V.; Niess, B.; Haustedt, L. O.; Hoffmann, H. M. R. Org.
Lett. 2002, 4, 3239. (g) Hillier, M. C.; Price, A. T.; Meyers, A. I. J. Org.
Chem. 2001, 66, 6037.
€
(1) Jansen, R.; Irschik, H.; Reichenbach, H.; Wray, V.; Hofle, G.
Liebigs Ann. Chem. 1994, 759.
(2) For reviews of disorazole chemistry and biology, see: (a) Hopkins,
C. D.; Wipf, P. Nat. Prod. Rep. 2009, 26, 585. (b) Weissman, K. J.;
Mueller, R. Nat. Prod. Rep. 2010, 27, 1276. (c) Kretschmer, M.; Menche,
D. Synlett 2010, 2989. (d) Wipf, P.; Graham, T. H.; Xiao, J. Pure Appl.
Chem. 2007, 79, 753.
(6) (a) Wang, Z.; McPherson, P. A.; Raccor, B. S.; Balachandran, R.;
Zhu, G.; Day, B. W.; Vogt, A.; Wipf, P. Chem. Biol. Drug Des. 2007, 70,
75. (b) Powis, G.; Wipf, P.; Lynch, S. M.; Birmingham, A.; Kirkpatrick,
D. L. Mol. Cancer Ther. 2006, 5, 630. (c) Wipf, P.; Minion, D. J.; Halter,
R. J.; Berggren, M. I.; Ho, C. B.; Chiang, G. G.; Kirkpatrick, L.;
Abraham, R.; Powis, G. Org. Biomol. Chem. 2004, 2, 1911. (d) Wipf, P.;
Fritch, P. C.; Geib, S. J.; Sefler, A. M. J. Am. Chem. Soc. 1998, 120, 4105.
(7) Examples documenting the lability of trienes include: (a) Burke,
C. P.; Haq, N.; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 2157. (b)
Hicks, J. D.; Roush, W. R. Org. Lett. 2008, 10, 681. (c) Trost, B. M.;
Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.;
Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666. (d) Fuwa, H.; Sasaki,
M.; Satake, M.; Tachibana, K. Org. Lett. 2002, 4, 2981.
(3) (a) Lazo, J. S.; Reese, C. E.; Vogt, A.; Vollmer, L. L.; Kitchens,
€
C. A.; Gunther, E.; Graham, T. H.; Hopkins, C. D.; Wipf, P. J.
Pharmacol. Exp. Ther. 2010, 332, 906. (b) Xu, F. L.; Rbaibi, Y.;
Kiselyov, K.; Lazo, J. S.; Wipf, P.; Saunders, W. S. BMC Chem. Biol.
2010, 10, 1. (c) Tierno, M. B.; Kitchens, C. A.; Petrik, B.; Graham, T. H.;
Wipf, P.; Xu, F. L.; Saunders, W. S.; Raccor, B. S.; Balachandran, R.;
Day, B. W.; Stout, J. R.; Walczak, C. E.; Ducruet, A. P.; Reese, C. E.;
Lazo, J. S. J. Pharm. Exp. Ther. 2009, 328, 715. (d) Wipf, P.; Graham,
T. H.; Vogt, A.; Sikorski, R. P.; Ducruet, A. P.; Lazo, J. S. Chem. Biol.
Drug Des. 2006, 67, 66. (e) Hearn, B. R.; Arslanian, R. L.; Fu, H.; Liu, F.;
Gramajo, H.; Myles, D. C. J. Nat. Prod. 2006, 69, 148. (f) Elnakady,
€
Y. A.; Sasse, F.; Lunsdorf, H.; Reichenbach, H. Biochem. Pharmacol.
2004, 67, 927.
r
10.1021/ol2015994
Published on Web 07/08/2011
2011 American Chemical Society