to date, the asymmetric catalytic approaches to construct
these heterocycles in enantiomerically pure form are
still surprisingly rare and less exploited.4 Thus, the devel-
opment of a fascinating and powerful strategy that
allowed the rapid construction of enantioenriched and
structurally diverse 2,3-dihydropyrroles is particularly
appealing.
In recent years, organocatalytic5 domino reactions
where multiple carbonÀcarbon bond formation is carried
out in a “green” process without any troublesome experi-
mental procedures have become one of the most powerful
methods for the synthesis of useful and versatile organic
molecules. In contrast to the extensive and fruitful studies
in this area by using R,β-unsaturated aldehydes, ketones,
esters, imides, and nitroolefins as electrophiles,6 fewer
cases have been reported in which R,R-dicyanoolefins
serve as the electrophiles, probably because of their
high chemical reactivity.7 Considering R,R-dicyanoolefins
could be readily prepared from a simple Knoevenagel
condensation of aldehydes with malononitrile,8 the
nitrile as a useful functional group could be easily trans-
formed to other important groups such as carbonyl
derivatives or imines.9 Therefore, an organocatalytic
domino reaction using R,R-dicyanoolefins as starting
material could provide a direct access to optically
active compounds, such as chiral multisubstituted 2,3-
dihydropyrroles.
As part of our ongoing interest in developing
new methods for the synthesis of useful compounds,10
we recently succeeded in developing a novel class of
bifunctional thiourea catalysis based on rosin11 and
applied it to facilitate various transformations, for in-
stance, the Michael reaction of 1,3-dicarbonyls with
nitroalkenes,10a aza-Henry reactions with in situ genera-
tion of N-Boc imines,10b Mannich reaction of lactones
with N-Boc-aldimines,10c and aldol reaction of R-iso-
thiocyanato imides to R-ketoesters and isatins.10d,e En-
couraged by these successful efforts and aimed to
demonstrate the efficiency and generality of this rosin-
derived thiourea bifunctional catalysis, therefore, we turned
our recent attention to employing this novel catalysis for the
asymmetric synthesis of optically active 2,3- dihydropyrroles
prepared from simple and easily available starting materials
under a mild domino reaction.
(5) Selected recent reviews and examples on asymmetric organoca-
talysis: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b) Xu, X.; Wang,
W. Org. Biomol. Chem. 2008, 6, 2037. (c) List, B. Chem. Commun. 2006,
819. (d) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45,
1520. (e) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299. (f) Marigo,
M.; Schulte, T.; Franzen, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005,
127, 15710. (g) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2005, 127, 15051. (h) Oisaki, K.; Zhao, D.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 15051. (i) Weber,
M.; Jautze, S.; Frey, W.; Peters, R. J. Am. Chem. Soc. 2010, 132, 12222.
(j) Dong, S.; Liu, X.; Chen, X.; Mei, F.; Zhang, Y.; Gao, B.; Lin, L.;
Feng, X. J. Am. Chem. Soc. 2010, 132, 10650. (k) Ma., A.; Ma, D. Org.
Lett. 2010, 12, 3634. (l) Bui, T.; Barbas, C. F., III. Tetrahedron Lett.
2000, 41, 6951.
(6) For recent reviews and examples, see: (a) Enders, D.; Grondal, C.;
€
Huttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (b) Dondoni, A.;
Before attempting this novel strategy, we presumed its
possibility for the synthesis of chiral 2,3-dihydropyrroles.
We envisioned that in the presence of a chiral tertiary
amineÀthiourea, dibenzyl 2-aminomalonate 2 might be
activated through a hydrogen bond: the nitrogen atom of
the chiral tertiary amineÀthiourea with the carbonyl of 2
to form the enolate intermediate12 Then the electron-rich
R-carbon atom of 2 attacks the electron-deficient cyanoo-
lefins 1 to generate the Micheal adducts A, subsequently,
through intramolecular cyclization of A to afford the
cyclized adducts B, then through tautomerization of C to
obtain the desired final product 3 (Scheme 1).
Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638. (c) Nicolaou, K. C.;
Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993. (d) Wasilke, J.-C.; Obrey,
S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001. (e) Toure,
B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439. (f) Wang, C.; Han, Z.-Y.;
Luo, H.-W.; Gong, L.-Z. Org. Lett. 2010, 12, 2266. (g) Zhang, F.-L.; Xu,
A.-W.; Gong, Y.-F.; Wei, M.-H.; Yang, X.-L. Chem.;Eur. J. 2009, 15,
6815. (h) Franzen, J.; Fisher, A. Angew. Chem., Int. Ed. 2009, 48, 787.
(i) Zhao, G.-L.; Vesely, J.; Rios, R.; Ibrahem, I.; Sunden, H.; Cordova,
A. Adv. Synth. Catal. 2008, 350, 237. (j) Hazelard, D.; Ishikawa, H.;
Hashizume, D.; Koshino, H.; Hayashi, Y. Org. Lett. 2008, 10, 1445.
(k) Penon, O.; Carlone, A.; Mazzanti, A.; Locatelli, M.; Sambri, L.;
Bartoli, G.; Melchiorre, P. Chem.;Eur. J. 2008, 14, 4788. (l) Carlone,
A.; Cabrera, S.; Marigo, M.; Jørgenson, K. A. Angew. Chem., Int. Ed.
€
2007, 46, 1101. (m) Enders, D.; Huttl, M. R. M.; Runsink, J.; Raabe, G.;
Wendt, B. Angew. Chem., Int. Ed. 2007, 46, 467. (n) Zhou, J.; List, B. J.
Am. Chem. Soc. 2007, 129, 7498. (o) Beeson, T. D.; Mastracchio, A.;
Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582.
(p) Tan, B.; Candeias, N. R.; Barbas, C. F., III. Nat. Chem. 2011, 3, 473.
(7) (a) Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2006, 128, 3928.
(b) Liu, T.-Y.; Cui, H.-L.; Long, J.; Li, B.-J.; Wu, Y.; Ding, L.-S.; Chen,
Y.-C. J. Am. Chem. Soc. 2007, 129, 1878. (c) Li, X.-M.; Wang, B.; Zhang,
J.-M.; Yan, M. Org. Lett. 2011, 13, 374. (d) Nikishkin, N. I.; Huskens, J.;
Verboom, W. Eur. J. Org. Chem. 2010, 35, 6820.
(8) Guo, K.; Thompson, M. J; Chen, B. J. Org. Chem. 2009, 74, 6999.
(9) (a) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem., Int. Ed.
2005, 44, 4032. (b) Hazell, H. N. G.; Jorgensen, K. A. J. Org. Chem.
2002, 67, 8331. (c) Mitchell, C. E.; Brenner, T. S. E.; Ley, S. V. Chem.
Commun. 2005, 5346. (d) Hojabri, L.; Hartikka, A.; Moghaddam, M. F.;
Arvidsson, P. I. Adv. Synth. Catal. 2007, 349, 740. (e) Bernardi, L.; Fini,
F.; Fochi, M.; Ricci, A. Synlett 2008, 1857.
(10) Selected for rosin-derived thiourea catalyzed reactions: (a)
Jiang, X. X.; Zhang, Y. F.; Liu, X.; Zhang, G.; Lai, L. H.; Wu, L. P.;
Zhang, J. N.; Wang, R. J. Org. Chem. 2009, 74, 5562. (b) Jiang, X. X.;
Zhang, Y. F.; Wu, L. P.; Zhang, G.; Liu, X.; Zhang, H. L.; Fu, D.; Wang,
R. Adv. Synth. Catal. 2009, 351, 2096. (c) Jiang, X. X.; Fu, D.; Zhang, G.;
Cao, Y. M.; Liu, L. P.; Song, J. J.; Wang, R. Chem. Commun. 2010, 46,
4294. (d) Jiang, X. X.; Zhang, G.; Fu, D.; Cao, Y. M.; Shen, F. F.; Wang,
R. Org. Lett. 2010, 12, 1544. (e) Jiang, X. X.; Cao, Y. M.; Wang, Y. Q.;
Liu, L. P.; Shen, F. F.; Wang., R. J. Am. Chem. Soc. 2010, 132, 15328.
(f) Liu, X. D.; Deng, L. J.; Jiang, X. X.; Yan, W. J.; Liu, C. L.; Wang, R.
Org. Lett. 2010, 12, 876. (g) Hong., L.; Sun., W. S.; Liu, C. X.; Zhao,
D. P.; Wang, R. Chem. Commum. 2010, 46, 2856.
To explore the possibility of the proposed Michael/
cyclization sequence, initially, the reaction of 2-benzyli-
denemalononitrile with diethyl 2-formamidomalonate
was used as a model reaction, and a variety of bifunc-
tional organocatalysts (Figure 1) were screened at room
(11) Selected recent reviews and examples on asymmetric thiourea,
see: (a) Connon, S. J. Chem.;Eur. J. 2006, 12, 5418. (b) Yu, X.; Wang,
W. Chem. Asian. J. 2008, 3, 516. (c) Zhang, Z.; Schreiner, P. Chem. Soc.
Rev. 2009, 38, 1187. (d) List, B.; Yang, J. W. Science 2006, 313, 1584.
(e) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132,
5030. (f) Bui, T.; Syed, S.; Barbas, C. F., III. J. Am. Chem. Soc. 2009, 131,
8758. (g) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc.
2007, 129, 6686. (h) Zu, L. S.; Wang, J.; Li, H.; Xie, H. X.; Jiang, W.;
Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (i) Wang, Y.; Li, H. M.;
Wang, Y. Q.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2007,
129, 6364. (j) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed.
2005, 44, 6367.
(12) (a) Zuend, S. J.; Jacøbsen, E. N. J. Am. Chem. Soc. 2007, 129,
15872. (b) Doyle, A. G.; Jacøbsen, E. N. Chem. Rev. 2007, 107, 5713.
(c) Ren, Q.; Gao, Y.; Wang, J. Chem.;Eur. J. 2010, 16, 13594. (d) Hu,
Z.-P.; Lou, C.-L.; Wang, J.-J.; Chen, C.-X.; Yan, M. J. Org. Chem. 2011,
76, 3797.
Org. Lett., Vol. 13, No. 15, 2011
3807