Table 1. Progargylation of Ketonesa
Table 2. Catalyst Dependence on Enantioselective Propargyla-
tiona
temp
time
(h)
yield
(%)b
entry
boronate
methoda
(°C)
erc
1
2
3
4
5
6
7
8
9
1
1
1
1
1
2
2
2
2
a
b
b
b
c
20
65
72
1
0
5
ꢀ
4:1
65
15
1
80
60
77
75
80
64
85
93:7
93:7
93:7
3:1
105
105
20
1
entry
catalyst
yield (%)b
erc
a
b
b
c
72
15
1
1
2
3
4
5
6
7
8
9
5b
5c
5d
5e
5f
5g
6
81
82
79
65
70
55
58
80
84
52:48
92.5:7.5
93:7
65
97:3
97:3
97:3
65
60
1
92.5:7.5
94:6
a Catalyst (0.05 mmol) was dissolved in boronate (0.75 mmol) and
then added ketone (0.5 mmol) using the following methods: (a) stirred at
room temp. (b) conventional heating (c) microwave reactor held at 10 W.
b Isolated yield. c Determined by chiral HPLC analysis.
97:3
92:8
7
96:4
8
89:11
lowered substantially by the use of microwave irradia-
tion (entries 4ꢀ7).
a Reactions run with 10 mol % catalyst (0.05 mmol) that was
dissolved in boronate (0.75 mmol) and then added ketone (0.5 mmol)
and submitted directly to the microwave at 10 W for 60 min. b Isolated
yield. c Determined by chiral HPLC analysis.
We proposed the use of allenyldioxaborolane 2 as the
nucleophilewith the expectationthatthe greater ringstrain
in the cyclic boronate would result in a better exchange
partner for the biphenol catalyst leading to a faster reac-
tion. Indeed, the use of boronate 2 resulted in an increase in
the rate of reaction, 64% yield after 1 h at 65 °C
(Table 1, entry 8) compared to a 5% yield with boronate
1 (Table 1, entry 2), with an increase in enantioselec-
tivity. Boronate 2 also demonstrated greater reactivity
at room temperature (Table 1, entry 6) over boronate 1.
While a higher rate of the racemic background reaction
is expected for boronate 2, upon heating, the rate of the
BINOL/boronate exchange reaction and entry into the
catalytic pathway appears to exceed the uncatalyzed
pathway (entries 7 and 8). Ultimately, the microwave-
promoted reaction at a powermax setting of 10 W for
1 h afforded the product in excellent yield and enantios-
electivity (Table 1, entry 9).
We next investigated the dependence of catalyst struc-
ture on enantioselectivity in the propargylation reaction
(Table 2). Although 3,30-Br2-BINOL 5a afforded the
product in excellent yield and selectivity, other related
structures may be equally effective and that insight could
prove useful when investigating the reaction substrate
scope. The 3,30-substitution on the BINOL appeared
crucial (entry 1 vs entries 2ꢀ6) for enantioselectivity, and
the aryl substituted BINOLs 5f10 and 5g11 gave compar-
able results to 5a. Biphenols 612 and 713 were also suitable
catalysts (entries 7 and 8) while the use of VAPOL 813
(7) (a) Matsumoto, Y.; Naito, M.; Uozumi, Y.; Hayashi, T. J. Chem.
Soc., Chem. Commun. 1993, 1468. (b) Keck, G. E.; Krishnamurthy, D.;
Chen, X. Tetrahedron Lett. 1994, 35, 8323. (c) Yu, C.-M.; Yoon, S.-K.;
Baek, K.; Lee, J.-Y. Chem. Commun. 1997, 8, 763. (d) Yu, C.-M.; Yoon,
S.-K.; Baek, K.; Lee, J.-Y. Angew. Chem., Int. Ed. 1998, 37, 2392. (e)
Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem. Soc.
2001, 123, 12095. (f) Denmark, S. E.; Wynn, T. J. J. Am. Chem. Soc.
2001, 123, 6199. (g) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Tino, R.;
Umani-Ronchi, A. Tetrahedron: Asymmetry 2001, 12, 1063. (h) Nakajima,
M.; Saito, M.; Hashimoto, S. Tetrahedron: Asymmetry 2002, 13, 2449.
(i) Konishi, S.; Hanawa, H.; Maruoka, K. Tetrahedron: Asymmetry
2003, 14, 1603. (j) Hanawa, H.; Uraguchi, D.; Konishi, S.; Hashimoto,
T.; Maruoka, K. Chem.;Eur. J. 2003, 9, 4405. (k) Inoue, M.; Nakada,
M. Org. Lett. 2004, 6, 2977. (l) Liu, S.; Kim, J. T.; Dong, C.; Kishi, Y.
Org. Lett. 2009, 11, 4520. (m) Fandrick, D. R.; Fandrick, K. R.; Reeves,
J. T.; Tan, Z.; Tang, W.; Capacci, A. G.; Rodriguez, S.; Song, J. J.; Lee,
H.; Yee, N. K.; Senanayake, C. H. J. Am. Chem. Soc. 2010, 132,
7600. (n) Usanov, D. L.; Yamamoto, H. Angew. Chem., Int. Ed.
2010, 49, 8169. (o) Trost, B. M.; Ngai, M.-Y.; Dong, G. Org. Lett.
2011, 13, 1900. (p) Chen, J.; Captain, B.; Takenaka, N. Org. Lett. 2011,
13, 1654.
(3) Hernandez, E.; Burgos, C. H.; Alicea, E.; Soderquist, J. A. Org.
Lett. 2006, 8, 4089.
(4) (a) Haruta, R.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Am.
Chem. Soc. 1982, 104, 7667. (b) Ikeda, N.; Arai, I.; Yamamoto, H. J. Am.
Chem. Soc. 1986, 108, 483. (c) Minowa, N.; Mukaiyama, T. Bull.
Chem. Soc. Jpn. 1987, 60, 3697. (d) Corey, E. J.; Yu, C. M.; Lee,
D. H. J. Am. Chem. Soc. 1990, 112, 878. (e) Marshall, J. A.; Wang,
X.-J. J. Org. Chem. 1991, 56, 3211. (f) Marshall, J. A.; Adams, N. D. J.
Org. Chem. 1999, 64, 5201. (g) Loh, T.; Lin, M.; Tan, K. Tetrahedron
Lett. 2003, 44, 507. (h) Lai, C.; Soderquist, J. A. Org. Lett. 2005, 7, 799.
(i) Hirayama, L. C.; Dunham, K. K.; Singaram, B. Tetrahedron Lett.
2006, 47, 5173. (j) Brawn, R. A.; Panek, J. S. Org. Lett. 2007, 9, 2689.
(5) Ding, C.-H.; Hou, X.-L. Chem. Rev. 2011, 111, 1914.
ꢀ
(6) (a) Justicia, J.; Sancho-Sanz, I.; Alvarez-Manzaneda, E.; Oltra,
J. E.; Cuerva, J. M. Adv. Synth. Catal. 2009, 351, 2295. (b) Shi, S.; Xu, L.;
Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 6638.
Org. Lett., Vol. 13, No. 15, 2011
4021