Table 1. Optimization of the Conditions
entry
[Pd]
ligand
conversionb yield (%)b
1a
2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
PdCl2(dppe)
Cy3PHBF4
t-Bu3PHBF4
XPhos I
23%
76%
43%
47%
37%
39%
17%
23%
21%
18%
100%
5%
À
À
3
À
4a
5a
6a
7
RuPhos II
SPhos III
DPEPhos IV
Q-Phos V
(S)-TolBinap VI
dppm
À
À
À
À
8
À
9
<5
10
11
12
13
dppb
<5
dippf VII
À
61
À
PdCl2(COD) dippf
100%
75 (71)c
Figure 2. Ligands (IÀVII) and palladium dimer precatalyst VIII.
a Time = 1 h. b Relative GC yield using dodecane as the internal
standard. c Isolated yield.
has been reported in cross-coupling reactions with any
alkoxymethylmetallic species. Among all the sulfonated
activating groups available, we focused our work on the
methanesulfonyl (mesyl) counterpart, which has the ad-
vantages of being stable, inexpensive, atom-economical,
and easy to handle, even though it is known to be among
the least reactive of these nucleofugal species.9i,k,m,n,p We
disclose herein the first system for the Csp2ÀCsp3 Suzu-
kiÀMiyaura cross-coupling of aryl and heteroaryl mesy-
lates with various potassium alkoxymethyltrifluoroborates.
Previous reports from our laboratory underscore the
fact that the use of potassium trifluoroborates in the cross-
coupling of CÀO bonded species is facilitated by employ-
ing potassium phosphate as a base in a mixture of t-BuOH/
H2O (1/1).9i,p Keeping these observations in mind, we
screened different palladium and ligand sources with mes-
ylated naphthalene 1 and potassium methoxymethyltri-
fluoroborate2a, apartnerknowntobe difficult,10 asmodel
substrates (Table 1). Various alkyl or biaryl (Figure 2)
monodentate phosphines (including Buchwald ligands)
have been tested without success. RuPhos (II), which was
the best ligand when halides were used as electrophilic
partners,7a does not afford the desired compound 3a
(Table 1, entry 4). After extensive screening, only one
(bidentate) ferrocenic ligand, dippf (VII), led to the
formation of 3a with a 61% GC yield (Table 1, entry
11). Different palladium sources were also tested, and
PdCl2(COD) appeared to be the best catalyst precur-
sor, with 3a obtained with complete conversion and
71% isolated yield after 4 h (Table 1, entry 13).
highyields.7 That study was restrictedtothe use of aryl and
heteroaryl chlorides and bromides but afforded the desired
target structures in moderate to good yields without em-
ploying a large excess of the organoboron reagent.7a
Tanaka extended the scope of the reaction to an intramo-
lecular SuzukiÀMiyaura cross-coupling with sodium al-
koxymethylaryltrifluoroborates bearing an attendant chlo-
ride.8 However, this method, carried out on a very small
scale (0.10 mmol), suffered from a lack of generality, with
yields ranging from 4 to 71%.
All of these previous reports employed halides as elec-
trophilic partners, but to develop more environmentally
sound processes, more attention is currently given to
electrophilic alcohol derivatives.9 To our knowledge, no
example employing these activating electrophilic partners
(8) Tanaka, K.; Murai, N.; Shirotori, S.; Nagao, S.; Watanabe, Y.
2008, WO08032702.
(9) For recent examples using activated alcohols as electrophilic
partners: (a) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem.
Soc. 2008, 130, 14422–14423. (b) Li, Z.; Zhang, S. L.; Fu, Y.; Guo, Q. X.;
Liu, L. J. Am. Chem. Soc. 2009, 131, 8815–8823. (c) Guan, B. T.; Wang,
Y.; Li, B. J.; Yu, D. G.; Shi, Z. J. J. Am. Chem. Soc. 2008, 130, 14468–
14470. (d) Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K.
J. Am. Chem. Soc. 2009, 131, 17748–17749. (e) Antoft-Finch, A.;
Blackburn, T.; Snieckus, V. J. Am. Chem. Soc. 2009, 131, 17750–
17752. (f) Xu, L.; Li, B. J.; Wu, Z. H.; Lu, X. Y.; Guan, B. T.; Wang,
B. Q.; Zhao, K. Q.; Shi, Z. J. Org. Lett. 2010, 12, 884–887. (g) Tobisu,
M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008, 47, 4866–
4869. (h) Lipshutz, B. H.; Butler, T.; Swift, E. Org. Lett. 2008, 10, 697–
700. (i) Molander, G. A.; Beaumard, F. Org. Lett. 2010, 12, 4022–4025.
(j) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita,
A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 3, 1346–1416. (k) So,
C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008, 47, 8059–
8063. (l) So, C. M.; Lau, C. P.; Chan, A. S. C.; Kwong, F. Y. J. Org.
Chem. 2008, 73, 7731–7734. (m) Bhayana, B.; Fors, B. P.; Buchwald,
S. L. Org. Lett. 2009, 11, 3954–3957. (n) Chow, W. K.; So, C. M.; Lau,
C. P.; Kwong, F. Y. J. Org. Chem. 2010, 75, 5109–5112. (o) Kuroda, J. I.;
Inamoto, K.; Hiroya, K.; Doi, T. Eur. J. Org. Chem. 2009, 2251–2261.
(p) Molander, G. A.; Beaumard, F. Org. Lett. 2011, 13, 1242–1245.
We then investigated the scope of this reaction by varying
the nature of the potassium alkoxymethyltrifluoroborates
(10) The SuzukiÀMiyaura cross-couplings between 4-chorobenzoni-
trile or 4-chloroanisole and 2a resulted in low yields of 34% and 41%,
respectively.
Org. Lett., Vol. 13, No. 15, 2011
3949