H. Hanamura et al. / Tetrahedron Letters 52 (2011) 4039–4041
4041
attached by the introduction of silyl moieties onto CPDT skeleton,
Supplementary data
which exhibits very low fluorescent ability.
In addition, the UF of CPDT2 was 0.08 and 2.7 times as large as
that of CPDT1, indicating that the introduction of a phenyl group
onto silyl moieties drastically increase UF. It should be still remark-
able that the increase in the number of phenyl group on silyl moi-
eties enhances the fluorescent efficiency, as it was observed that
the UFs of CPDT3 and CPDT4 were 0.23 and 0.70, respectively. Fur-
ther detailed analysis of photochemical processes including the
determination of the rate constants as radiative rate constant,
intersystem crossing rate constant, and non-radiative rate constant
would be necessary for the clarification of the reason for the in-
crease in UF; however, the plausible reasons for the increase in
UF are as follows.10 In the case of the present CPDT1–CPDT4, the
larger number of phenyl groups on the silyl moieties resulted in
Supplementary data associated with this article can be found, in
References and notes
1. (a) Andrew, C. G.; Klaus, M. Adv. Polym. Sci. 2006, 199, 1–82; (b) Grimsdale, A.
C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev. 2009, 109,
897.
2. Leclerc, M. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2867; (b) Neher, D.
Macromol. Rapid Commun. 2001, 22, 1365; (c) Scherf, U.; List, E. J. W. Adv. Mater.
2002, 14, 477.
3. Ohshita, J.; Matsui, S.; Yamamoto, R.; Mizumo, T.; Ooyama, Y.; Harima, Y.;
Murafuji, T.; Tao, K.; Kuramochi, Y.; Kaikoh, T.; Higashimura, H. Organometallics
2010, 29, 3239.
4. Ozturk, T.; Ertas, E.; Mert, O. Tetrahedron 2005, 61, 11055.
5. (a) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953; (b) Zhang, X.; Zhu, D.
Polym. Chem. 2010, 1, 409.
the larger molar extinction coefficient (
would be likely that the increase in UF was induced by the increase
in because the radiative rate constant has linear relation with
e) as mentioned above. It
6. (a) Kraak, A.; Wiersema, A. K.; Jordens, P.; Wynberg, H. Tetrahedron 1968, 24,
3381; (b) Coppo, P.; Turner, M. L. J. Mater. Chem. 2005, 15, 1123.
7. (a) Beyer, R.; Kalaji, M.; Kingscote-Burton, G.; Merphy, P. J.; Pereria, V. M. S. C.;
Taylor, D. M.; Williams, G. O. Synth. Met. 1998, 92, 25; (b) Chochos, C. L.;
Economopoulos, S. P.; Deimede, V.; Gregoriou, V. G.; Lloyd, M. T.; Malliaras, G.
G.; Kallitsis, J. K. J. Phys. Chem. C 2007, 111, 10732; (c) Li, K.-C.; Huang, J.-H.;
Hsu, Y.-C.; Huang, P.-J.; Chu, C.-W.; Lin, J.-T.; Ho, K.-C.; Wei, K.-H.; Lin, H.-C.
Macromolecules 2009, 42, 3681; (d) Chen, C.-H.; Hsieh, C.-H.; Dubosc, M.;
Cheng, Y.-J.; Hsu, C.-S. Macromolecules 2010, 43, 697; (e) Ko, S.; Mondal, R.;
Risko, C.; Lee, J. K.; Hong, S.; McGehee, M. D.; Bredas, J.-L.; Bao, Z.
Macromolecules 2010, 43, 6685.
e
e.
Another reason for the increase in UF would be that the intersys-
tem crossing rate constant becomes negligible owing to the energy
stabilization of the first singlet excited state (S1) by silyl substitu-
tion to result in the change of the relative energy position against
the second triplet excited state (T2) as observed in the case of silyl-
substituted certain aromatic compounds.9a,c,10 It would be also
likely that the increase in UF was induced by the energy stabiliza-
tion of the first singlet excited state (S1) by the introduction of phe-
nyl groups on the silyl moieties.
8. Pal, B.; Yen, W.-C.; Yang, J.-S.; Chao, C.-Y.; Hung, Y.-C.; Lin, S.-T.; Chuang, C.-H.;
Chen, C.-W.; Su, W.-F. Macromolecules 2008, 41, 6664.
9. (a) Shizuka, H.; Sato, Y.; Ueki, Y.; Ishikawa, M.; Kumada, M. J. Chem. Soc.,
Faraday Trans. 1984, 80, 341; (b) Declercq, D.; Delbeke, P.; De Schryver, F. C.;
Van Meervelt, L.; Miller, R. D. J. Am. Chem. Soc. 1993, 115, 5702; (c) Kyushin, S.;
Ikarugi, M.; Goto, M.; Hiratsuka, H.; Matsumoto, H. Organometallics 1996, 15,
1067; (d) Maeda, H.; Inoue, Y.; Ishida, H.; Mizuno, K. Chem. Lett. 2001, 1224; (e)
Imai, K.; Sasaki, T.; Abe, J.; Kimoto, A.; Tamai, Y.; Nemoto, N. Polym. J. 2009, 41,
584; (f) Imai, K.; Hatano, S.; Kimoto, A.; Abe, J.; Tamai, Y.; Nemoto, N.
Tetrahedron 2010, 66, 8012; (g) Imai, K.; Kihara, Y.; Kimoto, A.; Abe, J.; Tamai,
Y.; Nemoto, N. Polym. J. 2011, 43, 58; (h) Ponomarenko, S. A.; Kirchmeyer, S.
Adv. Polym. Sci. 2011, 235, 33.
In summary, we achieved four cyclopenta[2,1-b:3,4-b0]dithi-
ophene derivatives having silyl moieties. The introduction of the
silyl moieties onto cyclopenta[2,1-b:3,4-b0]dithiophene induced
the bathochromic shift of wavelength at the maximum absorption
and fluorescence because of both destabilization of HOMO state
through
–
r–p conjugation and stabilization of LUMO state through
r⁄
p⁄ conjugation. It should be remarkable that the increase in the
10. Karatsu, T. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 111.
11. Karatsu, T.; Hazuku, R.; Asuke, M.; Nishigaki, A.; Yagai, S.; Suzuri, Y.; Kita, H.;
Kitamura, A. Org. Electron. 2007, 8, 357.
number of phenyl group on silyl moieties enhances the fluorescent
efficiency, and the highest UF in the present series of CPDT deriv-
atives was 0.70.
12. Calculated using Spartan ’08 for Windows (Wavefunction, Inc., Irvine, CA,
USA); Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.;
Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O’Neill, D. P.; DiStasio, Jr., R.
A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.;
Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.;
Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.;
Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney,
S. R.; Heyden, A.; Hirata, S.; Hsu, C. –P.; Kedziora, G.; Khalliulin, R. Z.;
Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.;
Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.;
Simmonett, A. C.; Subotnik, J. E.; Woodcock III, H. L.; Zhang, W.; Bell, A. T.;
Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.;
Schaefer III, H. F.; Kong, J.; Krylov, A. I.; Gilla, P. M. W.; Head-Gordon, M. Phys.
Chem. Chem. Phys. 2006, 8, 3172.
Acknowledgments
The authors would like to appreciate Ms. Satoko Tokiwa and Ms.
Nami Sugashima, Nihon University College of Engineering World-
wide Research Center for Advanced Engineering and Technology
(NEWCAT) for performing NMR measurements and Dr. Yoshio Sai-
to, Associate Professor of Nihon University, for performing HR-MS
measurements.