5 (a) P. C. Brooks, R. A. Clark and D. A. Cheresh, Science, 1994, 264,
569–571; (b) P. C. Brooks, A. M. P. Montgomery, M. Rosenfeld, R.
A. Reisfeld, T. Hu, G. Klier and D. A. Cheresh, Cell, 1994, 79, 1157–
1164; (c) C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D.
E. Ingber, Science, 1997, 276, 1425–1428; (d) W. Arap, R. Pasqualini
and E. Ruoslahti, Science, 1998, 279, 377–380; (e) K. E. Gottschalk
and H. Kessler, Angew. Chem., Int. Ed., 2002, 41, 3767–3774; (f) K. N.
Sugahara, T. Teesalu, P. P. Karmali, V. R. Kotamraju, L. Agemy, D. R.
Greenwald and E. Ruoslahti, Science, 2010, 328, 1031–1035.
6 M. D. Pierschbacher and E. Ruoslahti, Nature, 1984, 309, 30–33.
7 (a) M. A. Dechantsreiter, E. Planker, B. Matha, E. Lohof, G.
Holzemann, A. Jonczyk, S. L. Goodman and H. Kessler, J. Med.
Chem., 1999, 42, 3033–3040; (b) G. Tabatabai, M. Weller, B. Nabors,
M. Picard, D. Reardon, T. Mikkelsen, C. Ruegg and R. Stupp, Targeted
Oncol., 2010, 5, 175–181 .
8 J.-P. Xiong, T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S. L.
Goodman and M. A. Arnaout, Science, 2002, 296, 151–155.
9 (a) L. J. Kornberg, H. S. Earp, C. E. Turner, C. Prockop and L.
Juliano, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 8392–8396; (b) S.
Miyamoto, S. K. Akiyama and K. M. Yamada, Science, 1995, 267,
883–885; (c) G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells
and L. J. Griffith, J. Cell Science, 2000, 113, 1677–1686; (d) D. C. Worth
and M. Parsons, Int. J. Biochem. Cell Biol., 2008, 40, 2397–2409.
10 L. Auzzas, F. Zanardi, L. Battistini, P. Burreddu, P. Carta, G. Rassu,
C. Curti and G. Casiraghi, Curr. Med. Chem., 2010, 17, 1255–1299.
11 (a) F. Vo¨gtle, G. Reichardt, N. Werner, and A. J. Rackstraw, Dendrimer
Chemistry -Concepts, Syntheses, Properties, Applications, Wiley-VCH,
Weinheim, 2009; (b) G. R. Newkome, and C. N. Moorefield, Handbook
of Dendrimers: Synthesis, Nanoscience and Applications, Wiley-VCH,
Weinheim, 2009; (c) D. A. Tomalia, Prog. Polym. Sci., 2005, 30, 294–
324.
Conclusions
In summary, this paper reports the synthesis of dendritic RGD
peptides, an RGD lipopeptide and positive and negative control
peptides. Interestingly, the dendritic approach appeared to give op-
timal binding at the first generation, with the more highly branched
second generation system having lower affinity recognition as well
as a greater degree of non-specific ligand–protein interaction.
Endowing the RGD unit with a hydrophobic chain encourages
lipopeptide self-assembly and appears to enhance integrin binding.
Notably, the self-assembled approach is comparable to, and
competitive with the use of a first generation dendritic scaffold
to organise a multivalent ligand array (Fig. 9).
Fig. 9 Comparison of dendritic and self-assembled approaches to
multivalency.
12 (a) O. Rolland, C.-O. Turrin, A.-M. Caminade and J.-P. Marjoral,
New J. Chem., 2009, 33, 1809–1824; (b) U. Boas, J. B. Christensen,
and P. M. H. Heegaard, Dendrimers in Medicine and Biotechnology,
Royal Society of Chemistry, Cambridge, 2006; (c) B. Klajnert, and
M. Bryszewska, Dendrimers in Medicine, Nova Science, UK, 2007;
(d) I. J. Majoros, and J. R. Baker, Dendrimer-Based Nanomedicine, Pan
Stanford Publishing,Singapore, 2008.
13 (a) S. Monaghan, D. Griffith-Johnson, I. Matthews and M. Bradley,
Arkivoc, 2001, 2 Part 8; (b) R. Shukla, T. P. Thomas, J. Peters, A. Kotlyar,
A. Myc and J. R. Baker, Chem. Commun., 2005, 5739–5741; (c) H. Yang
and W. J. Kao, Int. J. Med., 2007, 2, 89–99; (d) E. Hill, R. Shukla, S. S.
Park and J. R. Baker, Bioconjugate Chem., 2007, 18, 1756–1762; (e) C.
A. Boswell, P. K. Eck, C. A. S. Regino, M. Bernado, K. J. Wong, D.
E. Milenic, P. L. Choyke and M. W. Brechbiel, Mol. Pharmaceutics,
2008, 5, 527–539; (f) T. L. Kaneshiro and Z.-R. Lu, Biomaterials, 2009,
30, 5660–5666; (g) C. L. Waite and C. M. Roth, Bioconjugate Chem.,
2009, 20, 1908–1916; (h) Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B.
Liu, F. Gao, P. Xi, Q. Ren and D. Cui, Mol. Pharmaceutics, 2010, 7,
94–104; (i) D. Q. McNerny, J. F. Kukowska-Latallo, D. G. Mullen, J.
M. Wallace, A. M. Desai, R. Shukla, B. Huang, M. M. B. Holl and J.
R. Baker, Bioconjugate Chem., 2009, 20, 1853–1859.
As such, the data in this paper indicate that both dendritic
(covalent), and self-assembly (non-covalent) strategies to multiva-
lency can be used in similar ways to enhance the binding of RGD
peptides to integrins, although in this case, the self-assembled
approach appears to give rise to slightly higher affinity integrin
binding. In further work, by modifying the peptide (e.g. RGDS), or
changing the lipophilic group to enhance self-assembly, we believe
that significantly enhanced binding affinities will be achieved, and
alternative nanostructures with higher integrin affinities will be
achieved.
Acknowledgements
We thank the EPSRC and the University of York for funding this
research through the DTA scheme.
14 (a) I. Dijkgraaf, A. Y. Rijnders, A. Soede, A. C. Dechesne, G. W. van
Esse, A. J. Brouwer, F. H. M. Corstens, O. C. Boerman, D. T. S. Rijkers
and R. M. J. Liskamp, Org. Biomol. Chem., 2007, 5, 935–944; (b) C.-B.
Yim, I. Dijkgraaf, R. Merkx, C. Versluis, A. Eek, G. E. Mulder, D. T.
S. Rijkers, O. C. Boerman and R. M. J. Liskamp, J. Med. Chem., 2010,
53, 3944–3953.
15 (a) D. Boturyn, J. L. Coll, E. Garanger, M. C. Favrot and P. Dumy, J.
Am. Chem. Soc., 2004, 126, 5730–5739; (b) E. Garanger, D. Boturyn, J.
L. Coll, M. C. Favrot and P. Dumy, Org. Biomol. Chem., 2006, 4, 1958–
1965; (c) Z.-H. Jin, V. Josserand, S. Foillard, D. Boturyn, P. Dumy,
M.-C. Favrot and J.-L. Coll, Mol. Cancer, 2007, 6, 41; (d) L. Sancey,
E. Garanger, S. Foillard, G. Schoehn, A. Hurbin, C. Albiges-Rizo, D.
Boturyn, C. Souchier, A. Grichine, P. Dumy and J.-L. Coll, Mol. Ther.,
2009, 17, 837–843.
16 (a) B. Hu, D. Finsinger, K. Peter, Z. Guttenberg, M. Barmann, H.
Kessler, A. Escherich, L. Moroder, J. Bohm, W. Baumeister, S. Sui and
E. Sackmann, Biochemistry, 2000, 39, 12284–12294; (b) V. Marchi-
Artzner, B. Lorz, U. Hellerer, M. Kantlehner, H. Kessler and E.
Sackmann, Chem.–Eur. J., 2001, 7, 1095–1101.
17 S. Cressman, I. Dobson, J. B. Lee, Y. Y. C. Tam and P. R. Cullis,
Bioconjugate Chem., 2009, 20, 1404–1411.
Notes and references
1 (a) M. Mammen, S.-K. Choi and G. M. Whitesides, Angew. Chem.,
Int. Ed., 1998, 37, 2754–2794; (b) A. Mulder, J. Huskens and D. N.
Reinhoudt, Org. Biomol. Chem., 2004, 2, 3409–3424; (c) J. D. Badjic,
A. Nelson, S. J. Cantrill, W. B. Turnbull and J. F. Stoddart, Acc. Chem.
Res., 2005, 38, 723–732; (d) J. Huskens, Curr. Opin. Chem. Biol., 2006,
10, 537–543; (e) V. Martos, P. Castreno, J. Valero and J. de Mendoza,
Curr. Opin. Chem. Biol., 2008, 12, 698–706.
2 (a) Y. M. Chabre and R. Roy, Curr. Top. Med. Chem., 2008, 8, 1237–
1285; (b) N. Jayaraman, Chem. Soc. Rev., 2009, 38m, 3463–3483; (c) M.
A. Kostiainen, J. G. Hardy and D. K. Smith, Angew. Chem., Int. Ed.,
2005, 44, 2556–2559; (d) G. M. Pavan, A. Danani, S. Pricl and D. K.
Smith, J. Am. Chem. Soc., 2009, 131, 9686–9694; (e) S. Jones, G. M.
Pavan, A. Danani, S. Pricl and D. K. Smith, Chem.–Eur. J., 2010, 16,
4519–4532.
3 (a) R. O. Hynes, Cell, 1992, 69, 11–25; (b) O. Cleaver and D. A. Melton,
Nat. Med., 2003, 9, 661–668; (c) E. F. Plow, T. A. Haas, L. Zhang, J.
Loftus and J. W. Smith, J. Biol. Chem., 2000, 275, 21785–21788; (d) R.
O. Hynes, Nat. Med., 2002, 8, 918–921.
18 V. Marchi-Artzner, B. Lorz, C. Gosse, L. Jullien, R. Merkel, H. Kessler
and E. Sackmann, Langmuir, 2003, 19, 835–841.
4 L. Perlin, S. MacNeil and S. Rimmer, Soft Matter, 2008, 4, 2331–2349.
4800 | Org. Biomol. Chem., 2011, 9, 4795–4801
This journal is
The Royal Society of Chemistry 2011
©