10.1002/anie.201806814
Angewandte Chemie International Edition
COMMUNICATION
aggregates seems to grow when we diluted the pure DMF solution with
dichloromethane to perform ESI MS experiments: here, we also found
aggregates of the dinuclear cage with an additional ligand and then also the
own lock in a very efficient manner – and all of this from only two
individual molecular building blocks. Future studies will evaluate if
this cage-in-ring structure is a more general motif that might be applied
to the assembly of supramolecular architectures with different alkoxy
or related groups and/or other chromophores and may be even two
different ones to investigate chromophore-chromophore interactions in
such a confined geometric arrangement.
Pd
6
L12 assembly. This agrees well with the fact that we were also able to
crystallize the Pd
6
L12 assembly form a mixture of DMF and benzene.
[10]
[11]
a) K. Suzuki, M. Tominaga, M. Kawano, M. Fujita, Chem. Commun. 2009,
1638–1640. b) C. Gütz, R. Hovorka, C. Klein, Q.-Q. Jiang, C. Bannwarth, M.
Engeser, C. Schmuck, W. Assenmacher, W. Mader, F. Topić, K. Rissanen, S.
Grimme, A. Lützen, Angew. Chem. 2014, 126, 1719–1724; Angew. Chem.
Int. Ed. 2014, 53, 1693–1698. c) B. Roy, R. Saha, A. K. Ghosh, Y. Patil, P. S.
Mukherjee, Inorg. Chem. 2017, 56, 3579–3588. d) M. Han, R. Michel, G. H.
Clever, Chem. Eur. J. 2014, 20, 10640–10644.
a) M. D. Wise, J. J. Holstein, P. Pattison, C. Besnard, E. Solari, R. Scopelliti,
G. Bricogne, K. Severin, Chem. Sci. 2015, 6, 1004–1010. b) P. Howlader, S.
Mukherjee, R. Saha, P. S. Mukherjee, Dalton Trans. 2015, 44, 20493–20501.
T. Zhang, L.-P. Zhou, X.-Q. Guo, L.-X. Cai, Q.-F. Sun, Nat. Commun. 2017,
8, 15898.
a) M. Frank, M. D. Johnstone, G. H. Clever, Chem. Eur. J. 2016, 22, 14104–
14125. b) G. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233–2243.
R. Zhu, J. Lübben, B. Dittrich, G. H. Clever, Angew. Chem. 2015, 127, 2838–
2842; Angew. Chem. Int. Ed. 2015, 54, 2796–2800.
A. Burkhardt, T. Pakendorf, B. Reime, J. Meyer, P. Fischer, N. Stübe, S.
Panneerselvam, O. Lorbeer, K. Stachnik, M. Warmer, P. Rödig, D. Göries
and A. Meents, Eur. Phys. J. Plus, 2016, 131, 56.
Acknowledgements
[12]
[13]
[14]
[15]
We thank Laura Schneider, Robin Rudolf and Karin Peters-
Pflaumbaum for help with ESI-MS measurements.
This work has been supported by the Deutsche
Forschungsgemeinschaft (GC489/2-2).
Diffraction data was collected at PETRA III at DESY, a member of the
Helmholtz Association (HGF). The authors thank Dr. Anja Burkhardt
for assistance in using synchrotron beamline P11 (I-20160736).[15]
[16]
[17]
G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3–8.
C. Klein, C. Gütz, M. Bogner, F. Topić, K. Rissanen, A. Lützen, Angew.
Chem. 2014, 126, 3814–3817; Angew. Chem. Int. Ed. 2014, 53, 3739–3742.
[18]
The alkoxy chain proved to be important to obtain the Pd L12 complex as we
6
have also tested a ligand lacking this group which does not form this type of
hexanuclear aggregate but rather a mixture of aggregates containing dinuclear
species as the main components (see SI).
a) M. Yoneya, T. Yamaguchi, S. Sato, M. Fujita, J. Am. Chem. Soc. 2012,
134, 14401–14407. b) M. Yoneya, S. Tsuzuki, T. Yamaguchi, S. Sato, M.
Fujita, ACS Nano 2014, 8, 1290–1296.
Keywords: self-assembly • BODIPY • palladium complexes •
metallosupramolecular chemistry • π-π-interaction
[19]
[20]
[1]
Some recent reviews: a) c) Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem.
2011, 3, 349–358. b) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem.
Rev. 2011, 111, 6810–6918. c) R. S. Forgan, J.-P. Sauvage, J. F. Stoddart,
Chem. Rev. 2011, 111, 5434–5464. d) H. Amouri, C. Desmarets, J. Moussa,
Chem. Rev. 2012, 112, 2015–2041. e) N. J. Young, B. P. Hay, Chem.
Commun. 2013, 49, 1354–1379. f) T. K. Ronson, S. Zarra, S. P. Black, J. R.
Nitschke, Chem. Commun. 2013, 49, 2476–2490. g) T. R. Cook, Y.-R.
Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734–777. h) M. D. Ward, P. R.
Raithby, Chem. Soc. Rev. 2013, 42, 1619–1636. i) M. M. J. Smulders, I. A.
Riddell, C. Browne, J. R. Nitschke, Chem. Soc. Rev. 2013, 42, 1728–1754. j)
J. G. Hardy, Chem. Soc. Rev. 2013, 42, 7881–7899. k) S. Mukherjee, P. S.
Mukherjee, Chem. Commun. 2014, 50, 2239–2248. l) C. J. Brown, F. D.
Toste, R, G. Bergmann, K. N. Raymond, Chem. Rev. 2015, 115, 3012–3035.
m) T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001–7045. n) L. Chen, Q.
Chen, M. Wu, F. Jiang, M. Hong, Acc. Chem. Res. 2015, 48, 201–210. o) S.
Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44,
419–432. p) S. H. A. M. Leenders, R. Gramaga-Doria, B. de Bruin, J. N. H.
Reek, Chem. Soc. Rev. 2015, 44, 433–448. q) L.-J. Chen, H.-B. Yang, M.
Shinoya, Chem. Soc. Rev. 2017, 46, 2555–2576.
Please note, that these experiments also revealed that the aggregate is only
stable at concentrations > 4 × 10–8 mol L–1 because we observed recovery of
the BODIPY’s fluorescence at lower concentration as
a result of the
decomposition of the assembly.
[2]
a) M. Fujita, K. Ogura, Bull. Chem. Soc. Jpn. 1996, 69, 1471–1482. b) N. B.
Debata, D. Tripathy, D. K. Chand, Coord. Chem. Rev. 2012, 256, 1831–1945.
c) K. Harris, D. Fujita, M. Fujita, Chem. Commun. 2013, 49, 6703–6712. d)
d) M. Han, D. M. Engelhard, G. H. Clever, Chem Soc Rev 2014, 43, 1848–
1860.
[3]
[4]
A. Schmidt, A. Casini, F. E. Kühn, Coord. Chem. Rev. 2014, 275, 19–36.
a) Q. F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, S. Sakamoto,
K. Yamaguchi, M. Fujita, Science 2010, 328, 1144–1147. b) J. Bunzen, J.
Iwasa, P. Bonakdarzadeh, E. Numata, K. Rissanen, S. Sato, M. Fujita,
Angew. Chem. 2012, 124, 3215–3217; Angew. Chem. Int. Ed. 2012, 51,
3161–3163.
[5]
a) D. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka, M. Fujita, Nature
2016, 540, 563–566. b) D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N.
Mizuno. T. Kumasaka, M. Fujita, Chem. 2016, 1, 91–101.
[6]
[7]
D. Preston, K. F. White, J. E. M. Lewis, R. A. S. Vasdev, B. F. Abrahams, J.
D. Crowley, Chem. Eur. J. 2017, 23, 10559–10567.
a) F. Würthner, A. Sautter, Org. Biomol. Chem. 2003, 1, 240–243. b) V.
Blanco, M. D. García, C. Peinador, J. M. Quintela, Chem. Sci. 2011, 2, 2407–
2416. c) M. Han, R. Michel, B. He, Y.-S. Chen, D. Stalke, M. John, G. H.
Clever, Angew. Chem. 2013, 125, 1358–1362; Angew. Chem. Int. Ed. 2013,
52, 1319–1323. d) X. Yan, T. R. Cook, P. Wang, F. Huang, P. J. Stang, Nat.
Chem. 2015, 7, 342–348. e) F. Kaiser, A. Schmidt, W. Heydenreuter, P. J.
Altmann, A. Casini, S. A. Sieber, F. E. Kühn, Eur. J. Inorg. Chem. 2016,
5189–5196. f) M. L. Saha, X. Yan, P. J. Stang, Acc. Chem. Res. 2016, 49,
2527–2539. g) G. Gupta, A. Das, K. C. Park, A. Tron, H. Kim, J. Mun, N.
Mandal, K.-W. Chi, C. Y. Lee, Inorg. Chem. 2017, 56, 4615–4621.
Please note that we chose low-boiling solvents to facilitate the ESI MS
studies. However, the ligand is not soluble in pure acetonitrile but in
dichloromethane and the palladium salt is not in pure dichloromethane but in
acetonitrile. Hence, dissolving the individual components in good solvents
and then mixing them proved to be successful.
[8]
[9]
Interestingly, we observed the formation of dinuclear cage [Pd
2
L
4
](BF
4
) in
4
pure DMF as proven by NMR experiments (symmetry of the 1H NMR
spectrum and DOSY) and mass spectrometry (see SI). However, the affinity
of the dinuclear cage to the ligand and the tendency to form the hexanuclear
This article is protected by copyright. All rights reserved.