(0.02) of 16 is higher than that reported for related compound
3 (F = 0.01).20
5 E. McClendon, A. O. Omollo, E. J. Valente and A. T. Hamme II,
Tetrahedron Lett., 2009, 50, 533–535.
6 (a) W.-B. Chen, Z.-J. Wu, Q.-L. Pei, L.-F. Cun, X.-M. Zhang and
W.-C. Yuan, Org. Lett., 2010, 12, 3132–3135; (b) H. T. Babu,
A. A. Joseph, D. Murlidharan and P. T. Perumal, Tetrahedron
Lett., 2010, 51, 994–996.
7 P. A. Colinas, V. Jager, A. Lieberknecht and R. D. Bravo,
Tetrahedron Lett., 2003, 44, 1071–1074.
8 (a) A. Macias, E. Alonso, C. del Pozo, A. Venturini and
J. Gonzalez, J. Org. Chem., 2004, 69, 7004–7012; (b) A. Bhalla,
P. Venugopalan and S. S. Bari, Eur. J. Org. Chem., 2006,
4943–4950.
In summary, an unprecedented formation of novel seleno-
spirocycle 15 and 16 has been achieved by the reaction of
simple selenides 8 and 9 with Br2/Et3N in one-pot synthesis.
The presence of electron-donating para-substituents, such
as –OMe and –Me, at the N-phenyl ring and an additional
ortho-coordinating nitro group at the 6-position plays a crucial
role in the spirocyclization. Selenospirocycles 15 and 16
exhibit significant photoluminescence. The unique synthesis
and structural characterization of a new selenotetracycle 20
has also been demonstrated by interesting C–C bond formation
using a thiol group. Further studies on the scope of this new
reaction are underway in our laboratory.
´
9 S. Fustero, N. Mateu, A. Simon-Fuentes and J. L. Acena, Org.
Lett., 2010, 12, 3014–3017.
10 T. Taniguchi, G. Tanabe, O. Muraoka and H. Ishibashi, Org.
Lett., 2008, 10, 197–199.
11 H. Huang and C. J. Forsyth, J. Org. Chem., 1995, 60,
2773–2779.
HBS is grateful to the Department of Science and Technology
(DST), New Delhi-110016 (India), for the Ramanna
Fellowship. We thank Prof. V. K. Singh and Prof. I. N. N.
Namboothiri (Department of Chemistry, Indian Institute of
Technology Bombay) for helpful discussions, Sophisticated
Analytical Instrumental Facility (SAIF), Indian Institute of
Technology Bombay (IITB), for recording 77Se NMR spectra.
VPS wishes to thank IIT Bombay for a teaching assistantship.
12 R. Schobert and J. M. Urbina-Gonza
46, 3657–3660.
´
lez, Tetrahedron Lett., 2005,
13 J. Huang and A. J. Frontier, J. Am. Chem. Soc., 2007, 129,
8060–8061.
14 (a) K. Hammer and K. Undheim, Tetrahedron, 1997, 53,
2309–2322; (b) S. Rosenberg and R. Leino, Tetrahedron Lett.,
2009, 50, 5305–5307.
15 G. R. Dake, M. D. B. Fenster, M. Fleury and B. O. Patrick, J. Org.
Chem., 2004, 69, 5676–5683.
16 J. Sun, L.-L. Zhang, E.-Y. Xia and C.-G. Yan, J. Org. Chem.,
2009, 74, 3398–3401, and references therein.
17 (a) K. Tsuchikama, Y. Kuwata and T. Shibata, J. Am. Chem. Soc.,
2006, 128, 13686–13687; (b) G. Satyanarayan and M. E. Maier,
J. Org. Chem., 2008, 73, 5410–5415.
18 A. Bhalla, P. Venugopalan, K. K. Bhasin and S. S. Bari,
Tetrahedron, 2007, 63, 3195–3204.
19 D. J. Press, E. A. Mercier, D. Kuzma and T. G. Back, J. Org.
Chem., 2008, 73, 4252–4255.
20 W. Shi, S. Sun, X. Li and H. Ma, Inorg. Chem., 2010, 49,
1206–1210.
Notes and references
z The data for 15: C29H21Cl3N4O4Se2, Mr = 753.77, triclinic, space
ꢀ
group P1, a = 10.5321(8) A, b = 10.6562(7) A, c = 14.6081(11) A,
a = 99.386(6)1, b = 94.285(6)1, g = 111.122(7)1, V = 1492.92(19) A3,
l = 1.541841, Z = 2, T = 295(2) K, rcalcd = 1.677 Mg mꢁ3, GOF =
1.045, R1 = 0.0592, wR2 = 0.1624 [I 4 2s(I)]; R1 = 0.0640, wR2 =
0.1673 (all data). Of the 12 233 reflections that were collected, 6196
were unique (Rint = 0.0278).
21 M. Alpegiani, A. Bedeschi, E. Perrone and G. Franceschi,
Tetrahedron Lett., 1986, 27, 3041–3044.
The data for 20: C27H19Cl3N4O4Se2, Mr = 727.73, triclinic, space
ꢀ
group P1, a = 11.6784(4) A, b = 14.9497(5) A, c = 18.2715(6) A,
a = 66.074(3)1, b = 78.162(3)1, g = 84.131(3)1, V = 2853.20(16) A3,
l = 1.541841, Z = 4, T = 295(2) K, rcalcd = 1.694 Mg mꢁ3, GOF =
1.046, R1 = 0.0560, wR2 = 0.1644 [I 4 2s(I)]; R1 = 0.0697, wR2 =
0.1744 (all data). Of the 25 837 reflections that were collected, 11 936
were unique (Rint = 0.0342). CCDC 816431 (15) and 816430 (20).
22 M. W. Carland and C. H. Schiesser, Molecules, 2004, 9, 466–471.
23 V. P. Singh, H. B. Singh and R. J. Butcher, 2011 (submitted).
24 (a) K. Selvakumar, H. B. Singh and R. J. Butcher, Chem.–Eur. J.,
2010, 16, 10576–10591; (b) V. P. Singh, H. B. Singh and
R. J. Butcher, Chem.–Asian J., 2011, DOI: 10.1002/
asia.201000858.
1 (a) J. J. Sims, G. H. Y. Lin and R. M. Wing, Tetrahedron Lett.,
1974, 15, 3487–3490; (b) Y. Asakawa, M. Tori, T. Masuya and
J.-P. Frahm, Phytochemistry, 1990, 29, 1577–1584; (c) L. C. Pati,
A. Roy and D. Mukherjee, Tetrahedron, 2002, 58, 1773–1778.
2 (a) M. Sannigrahi, Tetrahedron, 1999, 55, 9007–9071; (b) J. E. Aho,
P. M. Pihko and T. K. Rissa, Chem. Rev., 2005, 105, 4406–4440;
(c) S. Kotha, A. C. Deb, K. Lahiri and E. Manivannan, Synthesis,
2009, 165–193.
3 (a) B. M. Trost and C. Jiang, Synthesis, 2006, 369–396; (b) Q. Wei
and L.-Z. Gong, Org. Lett., 2010, 12, 1008–1011.
4 D. M. James, H. B. Kunze and D. J. Faulkner, J. Nat. Prod., 1991,
54, 1137–1140.
25 V. P. Singh, H. B. Singh and R. J. Butcher, Eur. J. Inorg. Chem.,
2010, 637–647.
26 (a) M. M. Kreevoy, E. T. Harper, R. E. Duvall, H. S. Wilgus and
L. T. Ditsh, J. Am. Chem. Soc., 1960, 82, 4899–4902;
(b) I. L. Dalinger, T. I. Cherkasova, S. S. Vorob’ev,
A. V. Aleksadrov, G. P. Popova and S. A. Shevelev, Russ. Chem.
Bull., 2001, 50, 2401–2405.
27 (a) S. S. Tang and G. G. Chang, J. Biochem. (Tokyo), 1996, 119,
1182–1188; (b) S. G. Tajc, B. S. Tolbert, R. Basavappa and
B. L. Miller, J. Am. Chem. Soc., 2004, 126, 10508–10509.
28 L. Giribabu, A. A. Kumar, V. Neeraja and B. G. Maiya, Angew.
Chem., Int. Ed., 2001, 40, 3621–3624.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7221–7223 7223