Table 2 Aziridination of tert-butanesulfinyl ketimines
The bulky cyclohexylketimine, 3h, was found not to react, showing
the limitations of the method. The two cyclic ketimines were
also relatively poor substrates, again presumably due to steric
hindrance.
Conclusions
In conclusion we have found that the aza-Darzens reaction of
tert-butanesulfinyl aldimines and ketimines is a reliable and stere-
oselective method for the synthesis of 2,3-disubstituted and 2,2¢,3-
trisubstituted aziridines. Our investigations into the synthesis of
even more highly substituted aziridines using this method, and the
use of these as chiral building-blocks for synthesis are on-going
and will be reported in due course.
Entry R, R¢
Time (h) Yielda (%) dea (%) Z/Eb
Product
1
2
3
4
5
6
7
Ph, Ph
2
95
36
23
65
43
50
—
96
76
—
—
—
1a
1b
1c
-(CH2)5-
-(CH2)6-
Ph, Me
3.5c
4c
62
2.5d
>98
>98
>98
—
85 : 15 1d
93 : 7 1e
71 : 29 1f
2-thiophene, Et 5c
Heptyl, Me
3
Cyclohexyl, Et 6c
—
—
a Major isomer. b cis/trans Ratio determined from the 1H NMR of the
crude mixture. c Reaction at r.t. d Solution was allowed to reach r.t. after
2.5 h.
Notes and references
1 For reviews on the area of the use of aziridines in synthesis, see: C.
Schneider, Angew. Chem., Int. Ed., 2009, 48, 2082–2084; C. A. Olsen,
H. Franzyk and J. W. Jaroszewski, Eur. J. Org. Chem., 2007, 1717–1724;
D. M. Hodgson, P. G. Humphreys and S. R. Hughes, Pure Appl. Chem.,
2007, 79, 269–279; M. Pineschi, Eur. J. Org. Chem., 2006, 4979–4988; H.
Ohno, in Aziridines and Epoxides in Organic Synthesis, ed. A. K. Yudin,
Wiley-VCH, Weinheim, 2006, pp. 37–72; X. E. Hu, Tetrahedron, 2004,
60, 2701–2743.
2 J. B. Sweeney, in Compounds with One Saturated Carbon-Heteroatom
Bond. Amines and Ammonium Salts, ed. D. Enders, Georg Thieme Verlag,
Stuttgart-New York, 2008, pp. 643–772.
3 For reviews on the synthesis of aziridines see: J. Sweeney, Eur. J. Org.
Chem., 2009, 4911–4919; G. S. Singh, M. D’Hooghe and N. De Kimpe,
Chem. Rev., 2007, 107, 2080–2135; I. D. G. Watson, L. L. Yu and A.
K. Yudin, Acc. Chem. Res., 2006, 39, 194–206; X. L. Hou, J. Wu, R. H.
Fan, C. H. Ding, Z. B. Luo and L. X. Dai, Synlett, 2006, 181–193; V. K.
Aggarwal, D. M. Badine and V. A. Moorthie, in Aziridines and Epoxides
in Organic Synthesis, ed. A. K. Yudin, Wiley-VCH, Weinheim, 2006, pp.
1–36; J. B. Sweeney, Chem. Soc. Rev., 2002, 31, 247–258.
4 For reviews on sulfinimine chemistry see: (a) M. T. Robak, M. A.
Herbage and J. A. Ellman, Chem. Rev., 2010, 110, 3600–3740; (b) F.
Ferreira, C. Botuha, F. Chemla and A. Pe´rez-Luna, Chem. Soc. Rev.,
2009, 38, 1162–1186; (c) D. Morton and R. A. Stockman, Tetrahedron,
2006, 62, 8869–8905; (d) F. A. Davis, J. Org. Chem., 2006, 71, 8993–
9003; (e) C. H. Senanayake, D. Krishnamurthy, Z.-H. Lu, Z. Hou and
I. Gallou, Aldrichim. Acta, 2005, 38, 93–104; (f) P. Zhou, B.-C. Chen
and F. A. Davis, Tetrahedron, 2004, 60, 8003–8030; (g) J. A. Ellman, T.
D. Owens and T. P. Tang, Acc. Chem. Res., 2002, 35, 984–995; (h) F. A.
Davis, P. Zhou and B.-C. Chen, Chem. Soc. Rev., 1998, 27, 13–18.
5 G. Liu, D. A. Coogan and J. A. Ellman, J. Am. Chem. Soc., 1997, 119,
9913–9914.
Fig. 1 X-Ray structure of 2c.
more sterically encumbered substrates giving the best yields. We
found no examples that failed to give the expected aziridine
product. The major product in each case was the cis aziridine, in
line with Davis’s findings on the p-toluenesulfinimines, suggesting
that the closed-transition state model put forward by Davis is
operating in these examples (Fig. 2).7
6 C. Roe, H. Hobbs and R. A. Stockman, Chem.–Eur. J., 2011, 17, 2704–
2708; L. Sasraku-Neequaye, D. MacPherson and R. A. Stockman,
Tetrahedron Lett., 2008, 49, 1129–1132; Z. Han, D. Krishnamurthy,
P. Grover, Q. K. Fang, X. Su, H. S. Wilkinson, Z. H. Lu, D. Magiera
and C. H. Senanayake, Tetrahedron, 2005, 61, 6386–6408; Z. Han, D.
Krishnamurthy, P. Grover, H. S. Wilkinson, Q. K. Fang, X. Su, Z.-H.
Lu, D. Magiera and C. H. Senanayake, Angew. Chem. Int. Ed., 2003,
115, 2078–2081; Z. Han, D. Krishnamurthy, P. Grover, Q. K. Fang, D.
Pflum and C. H. Senanayake, Tetrahedron Lett., 2003, 44, 4195–4197; Z.
Han, D. Krishnamurthy, P. Grover, Q. K. Fang and C. H. Senanayake,
J. Am. Chem. Soc., 2002, 124, 7880–7881; Z. Han, D. Krishnamurthy,
D. Pflum, P. Grover, S. A. Wald and C. H. Senanayake, Org. Lett., 2002,
4, 4025–4028.
Fig. 2 Closed transition state.
We next decided to look at a class of substrates not investigated
by Davis: sulfinylketimines. These substrates should yield trisub-
stituted aziridines, and we were keen to discover if the decreased
reactivity of ketimines vs. aldimines would be tolerated. Our results
are summarised in Table 2.
Once again, we were pleased to find that most substrates
prepared gave aziridines in high diastereoselectivity. Yields were
predictably lower than for the aldimines substrates, due to
increased steric interactions and lower reactivity of the ketimines.
7 F. A. Davis, H. Liu, P. Zhou, T. Fang, G. V. Reddy and Y. Zhang, J. Org.
Chem., 1999, 64, 7559–7567.
8 M. Brichacek, M. N. Villalobos, A. Plichta and J. T. Njardarson, Org.
Lett., 2011, 13, 1110–1113.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 5034–5035 | 5035
©