was removed in vacuo and the residue was purified by column
chromatography (hexanes–ethyl acetate 1 : 1).
White solid, mp 57–58 ◦C, 60% yield; Rf (CH3CN–NH3 9 : 1) 0.3;
◦
1
[a]D -5.3 (c 1.0, CH2Cl2, 25 C); H NMR (400 MHz, CDCl3):
d 0.61 (s, 3H), 0.87–0.95 (m, 18H), 1.04–1.13 (m, 15H), 1.34–
1.49 (m, 24H), 1.62–1.68 (m, 2H), 1.76–1.82 (m, 5H), 1.92–2.03
(m, 4H), 2.17–2.26 (m, 1H), 2.30–2.40 (m, 1H), 3.22–3.25 (m,
2H), 4.11–4.17 (m, 3H), 4.29–4.50 (m, 6H), 4.73–5.00 (m, 4H),
5.18 (br s, 2H), 7.07 (d, J = 5.7 Hz, 1H), 7.13 (d, J = 5.7 Hz,
1H), 7.68–7.73 (m, 4H); 13C NMR (CDCl3, 100 MHz) d 11.9,
12.0, 16.1, 17.5, 18.2, 20.8, 23.3, 23.9, 24.1, 24.8, 26.0, 26.3, 26.6,
27.0, 28.2, 30.8, 31.0, 32.2, 34.6, 34.9, 35.3, 35.8, 40.1, 40.4, 41.9,
42.7, 45.2, 45.3, 54.2, 55.9, 56.4, 56.9, 57.4, 58.4, 59.9, 64.6, 67.6,
75.2, 124.6, 125.0, 142.9, 144.1, 169.8, 174.1, 174.3, 174.9, 175.1;
HRMS (ESI) calcd for C58H98N12O9 [M + H]+ 1107.7658, found
1107.7639.
Compound 3a. White solid, mp 77–79 ◦C, 63% yield; Rf (ethyl
acetate) 0.7; [a]D +10.5 (c 1.5, MeOH, 25 ◦C); 1H NMR (CDCl3,
400 MHz) d 0.63 (s, 3H), 0.82–0.85 (m, 6H), 0.89–0.92 (m, 6H),
0.95 (d, J = 5.8 Hz, 3H), 1.01 (d, J = 6.3 Hz, 3H), 1.15–1.40
(m, 26H), 1.46–1.58 (m, 8H), 1.64–1.93 (m, 9H), 2.17–2.27 (m,
1H), 2.30–2.39 (m, 1H), 3.64 (s, 3H), 3.78 (s, 3H), 3.94 (br s, 1H),
4.01–4.12 (m, 2H), 4.13–4.23 (m, 1H), 4.40–4.61 (m, 4H), 4.66–
4.81 (m, 4H), 5.20 (d, J = 9.3 Hz, 1H), 5.72 (d, J = 8.3 Hz, 1H),
6.86 (d, J = 8.1 Hz, 2H), 7.23–7.25 (m, 2H), 7.75 (br s, 1H); 13C
NMR (CDCl3, 100 MHz) d 11.0, 12.6, 15.5, 17.2, 19.4, 23.0, 23.6,
23.9, 24.1, 24.9, 25.9, 26.5, 26.9, 27.4, 28.2, 28.6, 29.6, 30.9, 31.0,
32.1, 32.2, 33.6, 34.1, 34.8, 35.1, 35.9, 41.8, 46.4, 47.0, 47.1, 47.9,
51.2, 51.5, 55.3, 55.2, 55.8, 62.9, 64.5, 67.4, 72.9, 75.0, 79.5, 114.2,
124.1, 127.9, 130.0, 144.2, 155.5, 159.0, 169.7, 173.0, 174.4, 174.7;
HRMS (ESI) calcd for C58H92N6O11 [M + Na]+ 1071.6722, found
1071.6690.
Acknowledgements
The authors would like to thank Dr T. Schotten (CAN GmbH,
Germany) and Dr A. V. Gulevich (University of Illinois at
Chicago) for fruitful discussions.
General procedure for the synthesis of 4–7
The corresponding peptide (3 mmol for 2b–d and 4 mmol for 2e),
CuSO4·5H2O (0.2 mmol for 2b–d and 0.3 mmol for 2e) in 0.5 ml
of H2O and sodium ascorbate (0.8 mmol for 2b–d and 0.9 mmol
for 2e) in 0.5 ml of H2O were added successively to a solution of
the corresponding propargyl ester of bile acid derivative (1 mmol)
in 10 mL of CH2Cl2. The reaction mixture was stirred at 40 ◦C for
10 h for 4, 5, 6 and 12 h for 7. The solvent was removed in vacuo
and the residue was purified by column chromatography (ethyl
acetate or CH2Cl2–MeOH 10 : 1).
Notes and references
1 (a) Nonappa and U. Maitra, Org. Biomol. Chem., 2008, 6, 657–669;
(b) E. Virtanen and E. Kolehmainen, Eur. J. Org. Chem., 2004, 3385–
3399; (c) Y. Li and J. R. Dias, Chem. Rev., 1997, 97, 283–304; (d) P.
Wallimann, T. Marti, A. Fu¨rer and F. Diederich, Chem. Rev., 1997, 97,
1567–1608.
2 D. Stamp and G. Jenkins, Bile Acids: Toxicology and Bioactivity, Royal
Society of Chemistry, Cambridge, 2008, pp. 1–13.
3 (a) W. A. Alrefai and R. K. Gill, Pharm. Res., 2007, 24, 1803–1823;
(b) A. Enhsen, W. Kramer and G. Wess, Drug Discovery Today, 1998,
3, 409–418.
Compound 4a. White solid, mp 97–99 ◦C, 93% yield; Rf (ethyl
acetate) 0.7; [a]D +28.8 (c 1.5, MeOH, 25 ◦C); 1H NMR (CDCl3,
400 MHz) d 0.79–0.83 (m, 18H), 0.87–0.90 (m, 6H), 0.93 (s, 1H),
0.99–1.04 (m, 6H), 1.12–1.28 (m, 26H), 1.39 (s, 18H), 1.47–1.58
(m, 8H), 1.65–1.89 (m, 10H), 2.06–2.16 (m, 1H), 2.22–2.33 (m,
1H), 3.59 (s, 3H), 3.76 (s, 3H), 3.77 (s, 3H), 4.12–4.24 (m, 2H),
4.33–4.68 (m, 9H), 4.77–4.88 (m, 1H), 5.07–5.17 (m, 5H), 5.33 (br
s, 1H), 5.65–5.73 (m, 1H), 5.89–5.99 (m, 1H), 6.87–6.90 (m, 6H),
7.02 (d, J = 8.6 Hz, 2H), 7.22–7.26 (m, 4H), 7.79 (d, J = 8.6 Hz,
2H), 7.85 (s, 1H), 7.87 (s, 1H), 8.03 (d, J = 8.6 Hz, 2H); 13C NMR
(CDCl3, 100 MHz) d 11.0, 12.5, 14.1, 15.5, 17.2, 17.5, 19.5, 22.9,
23.5, 23.9, 24.1, 24.9, 25.7, 26.0, 26.4, 26.7, 27.4, 28.2, 29.6, 30.8,
31.0, 32.1, 32.2, 33.9, 34.5, 34.7, 35.7, 35.9, 36.1, 41.7, 45.5, 46.8,
47.9, 50.2, 51.0, 51.4, 53.2, 53.3, 55.2, 56.0, 60.3, 61.8, 62.0, 62.9,
74.2, 76.1, 79.4, 114.2, 114.3, 114.5, 123.7, 123.8, 124.1, 127.7,
129.9, 131.4, 143.0, 143.2, 155.3, 159.0, 161.7, 162.0, 165.4, 165.5,
173.1, 174.3, 174.5; HRMS (ESI) calcd for C101H146N12O18 [M +
Na]+ 1838.0776, found 1838.0696.
4 E. Sieva¨nen, Molecules, 2007, 12, 1859–1889.
5 (a) P. W. Swaan, K. M. Hillgren, F. C. Szoka and J. S. Øie, Bioconjugate
Chem., 1997, 8, 520–525; (b) E. Petzinger, A. Wickboldt, P. Pagels,
D. Starke and W. Kramer, Hepatology, 1999, 30, 1257–1268; (c) W.
Kramer, G. Wess, G. Schubert, M. Bickel, F. Girbig, U. Gutjahr, S.
Kowalewski, K.-H. Baringhaus, A. Enhsen, H. Glombik, S. Mu¨llner,
G. Neckermann, S. Schulz and E. Petzinger, J. Biol. Chem, 1992, 267,
18598–18604; (d) G. Wess, W. Kramer, G. Schubert, A. Enhsen, K.-H.
Baringhaus, H. Glombik, S. Mu¨llner, K. Bock, H. Kleine, M. John,
G. Neckermann and A. Hoffmann, Tetrahedron Lett., 1993, 34, 819–
822; (e) S. N. Bavikar, D. B. Salunke, B. G. Hazra, V. S. Pore, R.
H. Dodd, J. Thierry, F. Shirazi, M. V. Deshpande, S. Kadreppa and
S. Chattopadhyay, Bioorg. Med. Chem. Lett., 2008, 18, 5512–5517;
(f) D. G. Rivera and L. A. Wessjohann, Molecules, 2007, 12, 1890–
1899.
6 (a) C. W. Tornøe, C. Cristensen and M. Meldal, J. Org. Chem., 2002,
67, 3057–3064; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B.
Sharpless, Angew. Chem., 2002, 114, 2708–2711; (c) J. E. Moses and A.
D. Moorhouse, Chem. Soc. Rev., 2007, 36, 1249–1262; (d) M. Meldal
and C. W. Tornøe, Chem. Rev., 2008, 108, 2952–3015.
7 (a) H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8,
1128–1137; (b) D. K. Dalvie, A. S. Kalgutkar, S. C. Khojasteh-Bakht,
R. S. Obach and J. P. O’Donnell, Chem. Res. Toxicol., 2002, 15, 269–
299; (c) W. S. Horne, M. K. Yadav, C. D. Stout and M. R. Ghadiri, J.
Am. Chem. Soc., 2004, 126, 15366–15367.
Synthesis of compound 8
8 (a) Y. L. Angell and K. Burgess, Chem. Soc. Rev., 2007, 36, 1674–1689;
(b) A. L. Jochim, S. E. Miller, N. G. Angelo and P. S. Arora, Bioorg.
Med. Chem. Lett., 2009, 19, 6023–6026; (c) Ahsanullah, P. Schmieder,
R. Ku¨hne and J. Rademann, Angew. Chem., Int. Ed., 2009, 48, 5042–
5045; (d) N. G. Angelo and P. S. Arrora, J. Am. Chem. Soc., 2005, 127,
17134–17135; (e) H.-F. Chow, K.-N. Lau, Z. Ke, Y. Liang and C.-M.
Lo, Chem. Commun., 2010, 46, 3437–3453; (f) C. O. Kappe and E. V.
Eycken, Chem. Soc. Rev., 2010, 39, 1280–1290; (g) J. M. Holub and K.
Kirshenbaum, Chem. Soc. Rev., 2010, 39, 1325–1337.
A solution of 6b (70 mg, 0.044 mmol) in trifluoroacetic acid
(0.5 ml, 6.5 mmol) was refluxed for 7 h. The reaction mixture
was diluted with DCM (5 ml) and neutralized with an aqueous
saturated solution of sodium bicarbonate until the violet color
disappeared. The layers were separated and the aqueous layer was
extracted with DCM (2 ¥ 10 ml). The combined organic extracts
were dried (Na2SO4) and evaporated. The residue was purified by
column chromatography (CH3CN–NH3 90 : 1).
9 (a) A. Domling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168–3120;
(b) A. Domling, Chem. Rev., 2006, 106, 17–89; (c) A. V. Gulevich, A. G.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 4921–4926 | 4925
©