Journal of the American Chemical Society
ARTICLE
hydrogen-atoms were refined with anisotropic displacement parameters.
The hydrogen atoms were refined isotropically on calculated positions
using a riding model with their Uiso values constrained to equal to
1.5 times the Ueq of their pivot atoms for terminal sp3 carbon atoms and
1.2 times for all other carbon atoms. In 2, the N(SiMe3)2 group is
disordered over two positions. It was refined using distance restraints
and displacement parameters restraints.
In 3, relatively high residual density stays in the final structure. It can
be modeled with a disorder of Si2 and P1 resembling the two possible
twisted conformers of the five-membered ring. Consequentially, the
hydrocarbon substituents are involved in the disorder as well. Even
though high quality data up to relatively high resolution (d = 0.725 Å)
were employed in the refinement, only the two heavy atoms can properly
be refined and no residual density peaks could directly be assigned to
substituents because of the very low site occupation factors of about 0.04
and 0.02, respectively, for both of the two molecules in the asymmetric
unit. Using strong constraints and restraints enabled refinement of a
model of the disordered methyl groups. It was decided not to include a
model of the disorder in the final refinement. Further details and a model
of the disorder can be found in the Supporting Information.
Yao, S.; Brym, M.; van W€ullen, C.; Lentz, D. J. Am. Chem. Soc. 2006,
128, 9628–9629. For some recent review articles please see:
(g) Nagendran, S.; Roesky, H. W. Organometallics 2008, 27, 457–492.
(h) Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2011, 111, 354–396.
(i) Yao, S.; Xiong, Y.; Driess, M. Organometallics 2011, 30, 1748–1767.
(3) (a) Jutzi, P.; Kanne, D.; Kr€uger, C. Angew. Chem. 1986,
98, 163–164. Angew. Chem., Int. Ed. 1986, 25, 164. (b) Karsch, H. H.;
Keller, U.; Gamper, S.; M€uller, G. Angew. Chem. 1990, 102, 297–298.
Angew. Chem., Int. Ed. 1990, 29, 295–296. (c) So, C.-W.; Roesky, H. W.;
Magull, J.; Oswald, R. B. Angew. Chem. 2006, 118, 4052–4054. Angew.
Chem., Int. Ed. 2006, 45, 3948–3950. (d) So, C.-W.; Roesky, H. W.;
Gurubasavaraj, P. M.; Oswald, R. B.; Gamer, M. T.; Jones, P. G.; Blaurock, S.
J. Am. Chem. Soc. 2007, 129, 12049–12054. (e) Filippou, A. C.; Chernov,
O.; Schnakenburg, G. Angew. Chem. 2009, 121, 5797–5800. Angew.
Chem., Int. Ed. 2009, 48, 5687–5690. (f) Xiong, Y.; Yao, S.; Driess, M.
J. Am. Chem. Soc. 2009, 131, 7562–7563. (g) Gao, Y.; Zhang, J.; Hu, H.;
Cui, C. Organometallics 2010, 29, 3063–3065. (h) Filippou, A. C.;
Chernov, O.; Blom, B.; Stumpf, K. W.; Schnakenburg, G. Chem.—Eur.
J. 2010, 16, 2866–2872. (i) Xiong, Y.; Yao, S.; M€uller, R.; Kaupp, M.;
Driess, M. J. Am. Chem. Soc. 2010, 132, 6912–6913.
(4) Sen, S. S.; Jana, A.; Roesky, H. W.; Schulzke, C. Angew. Chem.
2009, 121, 8688–8690. Angew. Chem., Int. Ed. 2009, 48, 8536–8538.
(5) (a) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke,
D. Angew. Chem. 2009, 121, 5793–5796. Angew. Chem., Int. Ed. 2009,
48, 5683–5686. (b) Cui, H.; Shao, Y.; Li, X.; Kong, L.; Cui, C.
Organometallics 2009, 28, 5191–5195. (c) Sen, S. S.; Roesky, H. W.;
Stern, D.; Henn, J.; Stalke, D. J. Am. Chem. Soc. 2010, 132, 1123–1126.
(6) Sen, S. S.; Khan, S.; Roesky, H. W.; Kratzert, D.; Meindl, K.;
Henn, J.; Stalke, D.; Demers, J.-P.; Lange, A. Angew. Chem. 2011,
123, 2370–2373. Angew. Chem., Int. Ed. 2011, 50, 2322–2325.
(7) (a) Ghadwal, R. S.; Sen, S. S.; Roesky, H. W.; Granitzka, M.;
Kratzert, D.; Merkel, S.; Stalke, D. Angew. Chem. 2010, 122, 4044–4077.
Angew. Chem., Int. Ed. 2010, 49, 3952–3955. (b) Azhakar, R.; Ghadwal,
R. S.; Roesky, H. W.; Hey, J.; Stalke, D. Organometallics [Online early
access]. DOI: 10.1021/om200388a. Published online Jun 23, 2011.
(8) Tavꢁcar, G.;Sen, S. S.;Roesky, H. W.; Hey, J.; Kratzert, D.; Stalke,D.
Organometallics 2010, 29, 3930–3935.
Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge Crystal-
lographic Data Centre. The crystal data are listed in Table 1. Copies of
the data can be obtained free of charge from The Cambridge Crystal-
’ ASSOCIATED CONTENT
S
Supporting Information. CIF files for 2 and 3. Details
b
about the crystal structure refinement of 3 (PDF). This material
’ AUTHOR INFORMATION
Corresponding Authors
hroesky@gwdg.de; dstalke@chemie.uni-goettingen.de
(9) Khan, S.; Sen, S. S.; Kratzert, D.; Tavꢁcar, G.; Roesky, H. W.;
Stalke, D. Chem.—Eur. J. 2011, 17, 4283–4290.
(10) Sarish, S. P.; Jana, A.; Roesky, H. W.; Samuel, P. P.; Andrade,
C. E. A.; Dittrich, B.; Schulzke, C. Organometallics 2011, 30, 912–916.
(11) Khan, S.; Sen, S. S.; Michel, R.; Kratzert, D.; Roesky, H. W.;
Stalke, D. Organometallics 2011, 30, 2643–2645.
(12) Jana, A.; Leusser, D.; Objartel, I.; Roesky, H. W.; Stalke, D.
Dalton Trans. 2011, 40, 5458–5463.
(13) (a) Tavꢁcar, G.; Sen, S. S.; Azhakar, R.; Thron, A.; Roesky, H. W.
Inorg. Chem. 2010, 49, 10199–10202. (b) Azhakar, R.; Sarish, S. P.;
Roesky, H. W.; Hey, J.; Stalke, D. Inorg. Chem. 2011, 50, 5039–5043.
(14) (a) Tsutsui, S.; Sakamoto, K.; Kira, M. J. Am. Chem. Soc. 1998,
120, 9955–9956. (b) Lee, G.-H.; West, R.; M€uller, T. J. Am. Chem. Soc.
2003, 125, 8114–8115.
(15) (a) Khan, S.; Sen, S. S.; Roesky, H. W.; Kratzert, D.; Michel, R.;
Stalke, D. Inorg. Chem. 2010, 49, 9689–9693. (b) Jutzi, P.; Mix, A.;
Neumann, B.; Rummel, B.; Schoeller, W. W.; Stammler, H.-G.;
Rozhenko, A. B. J. Am. Chem. Soc. 2009, 131, 12137–12143.
’ ACKNOWLEDGMENT
We thank the Deutsche Forschungsgemeinschaft for support-
ing this work. D.S. is grateful for funding from the DFG Priority
Programme 1178, the DNRF funded Center for Materials
Crystallography (CMC) for support and the Land Niedersachsen
for providing J.H. with a fellowship in the Catalysis for Sustain-
able Synthesis (CaSuS) Ph.D. program. Dedicated to Professor
Karl Otto Christe on the occasion of his 75th birthday.
’ REFERENCES
(1) (a) Brook, M. A. Silicones. In Silicon in Organic, Organometallic,
and Polymer Chemistry; Eaborn, C., Ed.; John Wiley and Sons, Inc.:
New York, 2000; pp 256À308. (b) Moreau, W. M. Semiconductor
Lithography: Principles, Practices, and Materials; Plenum Press: New
York, 1988. (c) Lopinski, G. P.; Moffatt, D. J.; Wayner, D. D. M.;
Zgierski, M. Z.; Wolkow, R. A. J. Am. Chem. Soc. 1999, 121, 4532–4533.
(d) Lopinski, G. P.; Moffatt, D. J.; Wayner, D. D. M.; Wolkow, R. A.
J. Am. Chem. Soc. 2000, 122, 3548–3549.
(2) (a) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.;
Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc.
1994, 116, 2691–2692. (b) West, R.; Denk, M. Pure Appl. Chem. 1996,
68, 785–788. (c) Gehrhus, B.; Lappert, M. F.; Heinicke, J.; Boese, R.;
Blaser, D. J. Chem. Soc., Chem. Commun. 1995, 1931–1932. (d) Heinicke,
J.; Oprea, A.; Kindermann, M. K.; Karpati, T.; Nyulꢀaszi, L.; Veszprꢀemi,
T. Chem.—Eur. J. 1998, 4, 541–545. (e) Kira, M.; Ishida, S.; Iwamoto,
T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722–9723. (f) Driess, M.;
(16) (a) Kottke, T.; Stalke, D. J. Appl. Crystallogr. 1993, 26, 615–619.
(b) Stalke, D. Chem. Soc. Rev. 1998, 27, 171–178.
(17) (a) Brook, A. G.; Harris, J. W.; Lennon, J.; El-Sheikh, M. J. Am.
Chem. Soc. 1979, 101, 83–95. (b) Sakamoto, K.; Ogasawara, J.; Sakurai,
H.; Kira, M. J. Am. Chem. Soc. 1997, 119, 3405–3406. (c) Apeloig, Y.;
Bendikov, M.; Yuzefovich, M.; Nakash, M.; Bravo-Zhivotovskii, D.
J. Am. Chem. Soc. 1996, 118, 12228–12229. (d) Sakamoto, K.; Ogsawara,
J.; Kon, Y.; Sunagawa, T.; Kabuto, C.; Kira, M. Angew. Chem. 2002,
114, 1460–1462. Angew. Chem., Int. Ed. 2002, 41, 1402–1404.
(e) Inoue, S.; Ichinohe, M.; Sekiguchi, A. Angew. Chem. 2007,
119, 3410–3412. Angew. Chem., Int. Ed. 2007, 46, 3346–3348.
(18) (a) Kinjo, R.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc.
2007, 129, 26–27. (b) Ichonohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A.
12315
dx.doi.org/10.1021/ja205369h |J. Am. Chem. Soc. 2011, 133, 12311–12316