1626
T.-Z. Illyés et al. / Carbohydrate Research 346 (2011) 1622–1627
temperature for 20 min, TLC (1:1 hexane/EtOAc) indicated disap-
pearance of the starting materials. The mixture was evaporated un-
der reduced pressure, and the residue was purified by
crystallization from EtOAc–hexane to give 14 as white crystals,
signals, 2H, Glc-H6a, Man-H5); 4.12–4.06 (overlapping signals, 2H,
Man-H6b, Glc-H6b); 3.23 (m, 1H, Glc-H5); 2.23–1.90 (s, 24H,
8 ꢂ COCH3); 13C NMR (C6D6, 125 MHz): d 170.5, 170.4, 170.1 (2ꢂ),
1
0
0
169.9, 169.7, 169.3, 169.2 (COCH3); 88.2 (Man-C1, JC1 –H1
196 mg (92%), mp 163–165 °C, lit.29 163–164 °C; ½a D25
ꢀ
+8.5 (c 1.5,
174.5 Hz); 88.1 (Glc-C1, JC1–H1 157.9 Hz); 76.7 (Glc-C5); 74.5
1
CHCl3); lit.29 +8.8 (c 1.8, CHCl3); 1H NMR (C6D6, 500 MHz): d 5.71
(Glc-C3); 72.3 (Man-C5); 70.3 (Man-C2); 69.9 (Man-C3); 69.8
(Glc-C2); 68.4 (Glc-C4); 66.4 (Man-C4); 62.5 (Man-C6); 61.6 (Glc-
C6); 20.7, 20.5, 20.4 (COCH3). Anal. Calcd for C28H38O18S2: C,
46.27; H, 5.23; S, 8.81. Found: C, 46.36; H, 5.19; S, 8.91.
0
0
(t, 1H, Gal-H2, J2 ,3 10.0 Hz); 5.60 (t, 1H, Gal-H4); 5.58 (t, 1H,
0
0
0
0
Glc-H2, J1,2 9.9 Hz); 5.38 (dd, 1H, Gal-H3, J2 ,3 9.9 Hz, J3 ,4 3.2 Hz);
5.37 (t, 1H, Glc-H4); 5.28 (t, 1H, Glc-H3, J3,4 9.9 Hz); 4.87 (d, 1H,
0
0
Gal-H1, J1 ,2 10.1 Hz); 4.34 (m, 1H, Glc-H6a); 4.26 (m, 1H, Gal-
H6a); 4.25 (d, 1H, Glc-H1, J1,210.1 Hz); 4.18 (m, 1H, Gal-H6b);
4.10 (m, 1H, Glc-H6b, J6a,6b 11.5, J5,6a 3.3 Hz); 3.88 (t, 1H, Gal-
H5); 3.34 (m, 1H, Glc-H5); 2.09, 2.06, 2.01, 1.97, 1.95 (s, 24H,
8 ꢂ COCH3); 13C NMR (C6D6, 125 MHz): d 170.6, 170.5, 170.2,
170.0, 169.6, 169.4, 169.1 (COCH3); 90.1 (Gal-C1); 87.0 (Glc-C1);
77.2 (Glc-C5); 75.4 (Gal-C5); 74.8 (Glc-C4); 72.7 (Gal-C3); 69.9
(Gal-C4); 68.5 (Gal-C2, Glc-C3); 68.0 (Glc-C2); 62.0 (Glc-C6); 61.7
(Gal-C6); 20.8, 20.7, 20.5, 20.4, 20.3 (COCH3). Anal. Calcd for
C28H38O18S2: C, 46.27; H, 5.23; S, 8.81. Found: C, 45.88; H, 5.16;
S, 8.74. HRMS m/z Calcd for C28H38O18S2 [M+H]+: 726.1578. Found:
726.1585.
3.2.13. 2,3,4,6-Tetra-O-acetyl-b-D
-glucopyranosyl-(1,10)-dithio-
2-deoxy-2-acetamido-3,4,6-tri-O-acetyl-b-D-glucopyranoside
(17)
Method A: 17 was prepared as described for 14 by reaction of
1-thio-2-deoxy-2-acetamido-3,4,6-tri-O-acetyl-b- -glucopyra-
D
nose32 (7, 107 mg, 0.295 mmol) with 1b (150 mg, 0.295 mmol).
Pale yellow crystals 190 mg (89%), mp 135–137 °C; ½a D25
ꢀ
+1.8 (c
4.00, CHCl3); 1H NMR (CDCl3, 500 MHz): d 6.06 (d, 1H, GlcNAc-
0
0
NH); 5.26 (t, 1H, GlcNAc-H3, J2 ,3 9.8 Hz); 5.22 (t, 1H, Glc-H3, J2,3
0
0
10.1 Hz); 5.12 (t, 1H, Glc-H2); 5.05 (t, 1H, GlcNAc-H4, J3 ,4
9.9 Hz); 5.01 (t, 1H, Glc-H4, J2,3 10.0 Hz); 4.73 (d, 1H, GlcNAc-H1,
0
0
MethodB: Reaction of 1c (120 mg 0.325 mmol) with 2a (150 mg,
0.325 mmol) under the above-mentioned conditions afforded 14,
240 mg (85%).
J1 ,2 9.9 Hz); 4.60 (d, 1H, Glc-H1, J1,2 10.4 Hz); 4.45 (dd, 1H, Glc-
0
0
0
0
H6a); 4.26 (dd, 1H, GlcNAc-H6a, J5 ,6a 2.5 Hz, J6a ,6b 12.5 Hz); 4.16
0
0
(dd, 1H, GlcNAc-H6b, J5 ,6a 4.3 Hz); 4.11 (dd, 1H, GlcNAc-H2);
4.06 (d, 1H, Glc-H6b, J5,6a 5.2 Hz); 3.79 (m, 1H, Glc-H5); 3.71 (m,
1H, GlcNAc-H5); 2.11, 2.09, 2.05, 1.99 (s, 24H, 8 ꢂ COCH3); 13C
NMR (CDCl3, 125 MHz): d 170.8, 170.7, 170.6, 170.1, 169.9, 169.3,
169.2, 169.1 (COCH3); 89.2 (GlcNAc-C1); 86.7 (Glc-C1); 76.2 (Glc-
NAc-C5); 76.0 (Glc-C5); 73.6 (Glc-C3); 73.4 (GlcNAc-C3); 69.6
(Glc-C2); 68.2 (GlcNAc-C4); 68.1 (Glc-C4); 61.9 (Glc-C6); 61.7 (Glc-
NAc-C6); 52.9 (GlcNAc-C2); 23.2, 20.8, 20.7, 20.6, 20.5, 20.4
(COCH3). Anal. Calcd for C28H39NO17S2: C, 46.34; H, 5.37; N, 1.93;
S, 8.82. Found: C, 46.09; H, 5.48; S, 9.00; N, 1.85; HRMS m/z Calcd
for C28H39O17S2N [M+H]+: 725.1738. Found: 725.1744.
3.2.11. 2,3,4,6-Tetra-O-acetyl-b-
2,3,4,6-tetra-O-acetyl-b- -mannopyranoside (15)
D
-glucopyranosyl-(1,10)-dithio-
D
Method A: 15 was prepared as described for 14 by reaction of 1b
(107 mg, 0.294 mmol) with 3a (150 mg, 0.295 mmol). Recrystalli-
zation from EtOAc/hexane afforded compound 15 as white crystals,
199 mg (93%), mp 186–188 °C, lit.3 187–188 °C; ½a D25
ꢁ118.0 (c
ꢀ
1.0), lit.3 ꢁ118.4 (c 1.26; CHCl3); 1H NMR (C6D6, 500 MHz): d
0
0
0
0
6.12 (d, 1H, Man-H2, J1 ,2 1.4 Hz); 5.72 (t, 1H, Man-H4, J3 ,4
9.8 Hz); 5.60 (dd, 1H, Glc-H2, J1,2 9.6 Hz); 5.52 (dd, 1H, Man-H3,
0
0
J2 ,3 1.4 Hz); 5.40 (m, 2H, Glc-H3, Glc-H4); 5.10 (s, 1H, Man-H1,
Method B: Reaction of 1c (120 mg 0.325 mmol) with 7 (150 mg,
0.325 mmol) under the above-mentioned conditions afforded 17,
194 mg (91%).
0
0
J1 ,2 1.5 Hz); 4.56 (dd, 1H, Glc-H6a, J5,6a 4.9 Hz, J6a,6b 12.5 Hz); 4.4
0
0
0
0
(dd, 1H, Man-H6a, J6a ,6b 11.7 Hz, J5 ,6a 3.3 Hz); 4.30 (dd, 1H, Glc-
0
0
H6b, J5,6b 2.2 Hz); 4.23 (dd, 1H, Man-H6b, J5 ,6b 1.5 Hz); 3.92 (d,
1H, Glc-H1); 3.65 (ddd, 1H, Man-H5); 3.39 (m, 1H, Glc-H5); 2.10,
2.07, 2.04, 1.96, 1.90 (s, 24H, 8 ꢂ COCH3); 13C NMR (C6D6,
3.2.14. 1,2:3,4-Di-O-isopropylidene-6-thio-(2,3,4,6-tetra-O-
acetyl-b-D-glucopyranosyl-thio)-a-D-galactopyranoside (18)
125 MHz):
d
170.5, 170.2, 170.0, 169.8, 169.6, 169.2, 169.0
To a stirred solution of 1b (250 mg, 0.49 mmol) in 25 mL CH2Cl2
1
1
0
0
(COCH3); 90.9 (Man-C1, JC1 –H1 155.7 Hz); 84.4 (Glc-C1, JC1–H1
160.2 Hz); 77.1 (Man-C5); 76.9 (Glc-C5); 73.7 (Glc-C3); 71.6
(Man-C3); 69.9 (Man-C2); 68.4 (Glc-C2); 68.1 (Glc-C4); 65.2
(Man-C4); 61.7 (Man-C6); 61.5 (Glc-C6); 20.6, 20.5, 20.3, 20.0,
19.7 (COCH3). Anal. Calcd for C28H38O18S2: C, 46.27; H, 5.23; S,
8.81. Found: C, 46.35; H, 4.92; S, 8.96. HRMS m/z Calcd for
was added 135 mg (0.49 mmol) 1,2:3,4-di-O-isopropylydene-6-
thio-a-D
-galactopyranoside33 (8) and stirred at room temperature
until TLC (1:1 hexane/EtOAc) indicated disappearance of starting
materials (ca. 4 h). After evaporation to dryness under reduced
pressure, the crude product was purified by column chromatogra-
phy (6:4 hexane/EtOAc) to give 18 as a yellowish syrup, 120 mg
C
28H38O18S2 [V+Y]+: 727.1578. Found: 727.1585.
(65%); ½a 2D5
ꢀ
+6.7 (c 0.33, CH2Cl2); 1H NMR (CDCl3, 500 MHz): 5.49
MethodB: Reaction of 1c (120 mg 0.325 mmol) with 3a (150 mg,
0.325 mmol) under the above-mentioned conditions afforded 15,
195 mg (91%).
(d, 1H, Gal-H1); 5.20 (t, 1H, Glc-H3); 5.12 (t, 1H, Glc-H2); 5.06 (t,
1H, Glc-H4); 4.62 (d, 1H, Glc-H1); 4.53 (dd, 1H, Gal-H3); 4.38
(dd, 1H, Gal-H2); 4.22 (dd, 1H, Gal-H4); 4.12 (dd, 1H, Glc-H6a),
4.10 (dd, 1H, Glc-H6b); 4.05 (m, 1H, Gal-H5); 3.72 (m, 1H, Glc-
H5); 3.05 (dd, 1H, Gal-H6a); 2.97 (dd, 1H, Gal-H6b); 2.12, 2.08,
2.02, 2.00 (s, 12H, 4 ꢂ OCOCH3); 1.51 (s, 3H, CH3); 1.37 (s, 3H,
CH3); 1.32 (s, 6H, CH3); 13C NMR (CDCl3, 125 MHz): d 170.7,
170.5, 169.3, 169.1 (COCH3); 109.2, 108.7 (Cqa); 96.5 (Gal-C1);
89.6 (Glc-C1); 75.9 (Glc-C5); 73.7 (Glc-C3); 71.6 (Gal-C2); 70.8
(Gal-C3); 70.4 (Gal-C4); 69.3 (Gal-C5); 68.1 (Glc-C2); 66.1 (Glc-
C4); 62.1 (Glc-C6), 39.4 (Gal-C6); 26.0, 25.8, 24.9, 24.3 (CH3);
20.54, 20.45 (COCH3). Anal. Calcd for C26H38O14S2: C, 48.90; H,
5.95; S, 10.03. Found: C, 48.87; H, 6.12; S, 9.40.
3.2.12. 2,3,4,6-Tetra-O-acetyl-b-
2,3,4,6-tetra-O-acetyl- -mannopyranoside (16)
To a stirred solution of 4b (50 mg, 0.098 mmol) in EtOAc (5 mL)
was added a solution of 1-thio-2,3,4,6-tetra-O-acetyl-b- -glucopyr-
D
-glucopyranosyl-(1,10)-dithio-
a-D
D
anose (1a, 36 mg, 0.098 mmol) in EtOAc (5 mL). The mixture was
stirred at room temperature with monitoring by TLC (4:6 Et2O/ben-
zene). After 2 h the mixture was evaporated to dryness, and the res-
idue purified by column chromatography (4:6 Et2O/benzene) to
afford 16 as a colorless oil, 63 mg (89%). ½a D25
ꢁ4.3 (c 0.11, CHCl3);
ꢀ
1H NMR (C6D6, 500 MHz): d 6.10 (dd, 1H, Man-H2); 5.70 (t, 1H,
0
0
0
0
Man-H4, J3 ,4 10 Hz); 5.65 (d, 1H, Man-H1, J1 ,2 < 1.0 Hz); 5.63 (dd,
3.2.15. Methyl-2,3-di-O-acetyl-4-thio-(2,3,4,6-tetra-O-acetyl-b-
0
0
1H, Man-H3, J2 ,3 3.1 Hz); 5.45 (t, 1H, Glc-H2, J1,2 9.5 Hz); 5.32 (t,
D
-glucopyranosyl-thio)-6-O-benzyl-
Methyl-2,3-di-O-acetyl-4-thio-6-O-benzyl-
side (9, 110 mg, 0.294 mmol)34,35 was dissolved in 10 mL CH2Cl2
a
-
D
-glucopyranoside (19)
0
0
1H, Glc-H3); 5.24 (t, 1H, Glc-H4); 4.36 (dd, Man-H6a, J6a ,6b
12.3 Hz, J5 ,6a 4.8 Hz); 4.23 (d, 1H, Glc-H1); 4.22–4.13 (overlapping
a-D
-glucopyrano-
0
0