a trifluoromethyl group and a sulfur atom at the stereo-
genic carbon center.
Considering the significant role of bifunctional catalysts
played in the asymmetric catalysis,9,10 we envisioned that
an acidÀbase bifunctional catalyst could efficiently en-
hance the nucleophilicity of the thiols and simultaneously
activate the conjugated double bond in 4,4,4-trifluorocro-
tonates through hydrogen bonding interactions with the
ester group and, thereby, realize this challenging sulfa-
Michael addition with high enantioselectivity. Herein, we
report the first catalytic asymmetric sulfa-Michael addi-
tion of thiols to 4,4,4-trifluorocrotonates catalyzed by
bifunctional amine-thiourea in high yields and excellent
enantioselectivities with as low as a 1 mol % catalyst
loading, and further demonstrate that application of the
method allowed for facile access to enantioenriched thio-
chroman-4-one and the key intermediate for the asym-
metric synthesis of the potent MMP-3 inhibitor, (R)-γ-
trifluoromethyl γ-sulfone hydroxamate.
Figure 1. Potent inhibitor of MMP-3 (stromelysin-1): (R)-γ-
trifluoromethyl γ-sulfone hydroxamate.
compounds,4 and much attention has been paid to devel-
oping enantioselective catalytic protocols for this reaction
over the past decades.5À7 However, catalytic asymmetric
sulfa-Michael addition to straightforwardly access the
optically pure intermediates bearing a sulfur atom and a
trifluoromethyl group at the stereogenic center remains a
challenge and has met with little success. To the best of our
knowledge, there was only one example of the asymmetric
sulfa-Michael addition of thiols to4,4,4-trifluorocrotonate
promoted by an enzyme in moderate yield and enantio-
selectivity.8 A catalytic asymmetric version of this trans-
formation may not only diversify the existing asymmetric
sulfa-Michael addition reaction but also be uniquely valu-
able in the efficient construction of building blocks bearing
(5) For examples of organometallic-catalyzed Michael addition of
thiols, see: (a) Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K.
J. Am. Chem. Soc. 1997, 119, 12974. (b) Emori, E.; Arai, T.; Sasai, H.;
Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043. (c) Kanemasa, S.;
Oderaotoshi, Y.; Wada, E. J. Am. Chem. Soc. 1999, 121, 8675. (d) Emori,
E.; Iida, T.; Shibasaki, M. J. Org. Chem. 1999, 64, 5318. (e) Kobayashi,
S.; Ogawa, C.; Kawamura, M.; Sugiura, M. Synlett 2001, 983. (f)
Matsumoto, K.; Watanabe, A.; Uchida, T.; Ogi, K.; Katsuki, T.
Tetrahedron Lett. 2004, 45, 2385. (g) Abe, A. M. M.; Sauerland,
S. J. K.; Koskinen, A. M. P. J. Org. Chem. 2007, 72, 5411. (h)
Kawatsura, M.; Komatsu, Y.; Yamamoto, M.; Hayase, S.; Itoh, T.
ꢁ
Tetrahedron 2008, 64, 3488. (i) Badoiu, A.; Bernardinelli, G.; Besnard,
Figure 2. Structures of the screened bifunctional organocatalysts.
€
C.; Kundig, E. P. Org. Biomol. Chem. 2010, 8, 193.
(6) For examples of organocatalyzed asymmetric sulfa-Michael ad-
dition, see: (a) McDaid, P.; Chen, Y. G.; Deng, L. Angew. Chem., Int. Ed.
2002, 41, 338. (b) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, 2141.
(c) Li, B.-J.; jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett
2005, 603. (d) Li, H.; Wang, J.; Zu, L.-S.; Wang, W. Tetrahedron Lett.
2006, 47, 2585. (e) Liu, Y.; Sun, B.-F.; Wang, B.-M.; Wakem, M.; Deng,
L. J. Am. Chem. Soc. 2009, 131, 418. (f) Kimmel, K.; Robak, M. T.;
Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754. (g) Rana, N. K.;
Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75, 2089. (h) Enders,
D.; Hoffman, K. Eur. J. Org. Chem. 2009, 1665. (i) Sun, J.; Fu, G. C.
J. Am. Chem. Soc. 2010, 132, 4568. (j) Wang, X.-F.; An, J.; Zhang, X.-X.;
Tan, F.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2011, 13, 808. (k) Leow, D.;
Lin, S.; Chittimlla, S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed.
2008, 47, 5641. (l) Hui, Y.-H.; Jiang, J.; Wang, W.-T.; Chen, W.-L.; Cai,
Y.-F.; Lin, L.-L.; Liu, X.-H.; Feng, X.-M. Angew. Chem., Int. Ed. 2010,
49, 4290.
To explore the feasibility of the synergistic activation
strategy for the proposed catalytic asymmetric sulfa-
Michael addition process, reaction of thiophenol 1a with
an E isomer of ethyl 4,4,4-trifluorocrotonate 2a11 was
carried out in dichloromethane at room temperature in
the presence of several commonly used acidÀbase bifunc-
tional organocatalysts. Two natural cinchona alkaloids and
four amine-thioureas were screened since they had been
demonstrated to be efficient for a variety of asymmetric
(7) For examples of organocatalytic tandem reactions of thiols, see:
ꢀ
(9) For reviews on bifunctional organocatalysis, see: (a) Tsogoeva,
S. B. Eur. J. Org. Chem. 2007, 1701. (b) Takemoto, Y. Org. Biomol.
Chem. 2005, 3, 4299. (c) Marcelli, T.; Maarseveen, J H. V.; Hiemstra, H.
Angew. Chem., Int. Ed. 2006, 45, 7496. (d) Connon, S. J. Chem.;Eur. J.
2006, 12, 5418. (e) Doyle, A.-G.; Jacobsen, E. N. Chem. Rev. 2007, 107,
5713. (f) Miyabe, H.; Takemoto, Y. Bull. Chem. Soc. Jpn. 2008, 81, 785.
(10) For reviews on bifunctional metallic catalysis, see: (a) Matsunaga,
S.;Shibasaki, M. Bull. Chem. Soc. Jpn. 2008, 81, 60. (b) Shibasaki, M.;
Kanai, M.; Matsunaga, S.; Kumagai, N. Acc. Chem. Res. 2009, 42,
1117. (c) Annamalai, V.; DiMauro, E. F.; Carroll, P. J.; Kozlowski,
M. C. J. Org. Chem. 2003, 68, 1973. (d) Hirahata, W.; Thomas, R. M.;
Lobkovsky, E. B.; Coats, G. W. J. Am. Chem. Soc. 2008, 130, 17658.
(e) Wu, B.; Gallucci, J. C.; Parquette, J. R.; RajanBabu, T. V. Angew.
Chem., Int. Ed. 2009, 48, 1126.
(a) Marigo, M.; Schulte, T.; Franzen, J.; Jørgensen, K. A. J. Am. Chem.
Soc. 2005, 127, 15710. (b) Brandau, S.; Maerten, E.; Jøgensen, K. A.
J. Am. Chem. Soc. 2006, 128, 14986. (c) Wang, W.; Li, H.; Wang, J.; Zu,
L.-S. J. Am. Chem. Soc. 2006, 128, 10354. (d) Zu, L.-S.; Wang, J.; Li, H.;
Xie, H.-X.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (e)
Zu, L.-S.; Xie, H.-X.; Li, H; Wang, J.; Jiang, W.; Wang, W. Adv. Synth.
Catal. 2007, 349, 1882. (f) Zhao, G.-L.; Vesely, J.; Rios, R.; Ibrahem, I.;
ꢀ
ꢀ
Sunden, H.; Cordova, A. Adv. Synth. Catal. 2008, 350, 237. (g) Dodda,
R.; Goldman, J. J.; Mandal, T.; Zhao, C.-G.; Broker, G. A.; Tiekink,
E. R. T. Adv. Synth. Catal. 2008, 350, 537. (h) Wang, X.-F.; Hua, Q.-L.;
Cheng, Y.; An, X.-L.; Yang, Q.-Q.; Chen, J.-R.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2010, 49, 8379.
(8) (a) Kitazume, T.; Murata, K. J. Fluorine Chem. 1988, 39, 75. For
nonasymmetric synthesis of β-benzylsulfanyl-β-trifluoromethyl-R-ami-
no acids via sulfa-Michael addition, see: (b) Enders, D.; Chen, Z.-X.
Lett. Org. Chem. 2005, 2, 156.
(11) Wang, B.-L.; Yu, F.; Qiu, X.-L.; Jiang, Z.; Qing, F.-L.
J. Fluorine Chem. 2006, 127, 580.
Org. Lett., Vol. 13, No. 16, 2011
4427