ORGANIC
LETTERS
2011
Vol. 13, No. 17
4514–4517
Copper-Catalyzed Synthesis of
Quinoxalines with o-Phenylenediamine
and Terminal Alkyne in the Presence of
Bases
Wen Wang, Yongwen Shen, Xu Meng, Mingming Zhao, Yongxin Chen, and Baohua
Chen*
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu
Lanzhou 730000, P. R. China, and Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, Lanzhou, 730000, P. R. China
Received June 21, 2011
ABSTRACT
A novel way of synthesizing quinoxalines efficiently through cyclization of o-phenylenediamine and terminal alkyne by Cu(II) and bases is
developed. This reaction proceeds smoothly to give the products in moderate to good yields.
Quinoxalines play an important role in the area of
nitrogen-containing heterocycles as they are useful inter-
mediates of other organic cyclic compounds1 and are
useful dyes.2 In addition, their derivatives possess signifi-
cant biological activities including antiviral, antibacterial,
and anti-inflammatory.3 The quinoxalines are also well-
known in the pharmacological industry.4 During the last
decades, many methods have been developed for the
preparation of quinoxalines.5 Most of them utilized o-
phenylenediamine and alkyne, which is oxidized to dike-
tone (Scheme 1).6 Numerous oxidants and catalytic sys-
tems for this process have been reported: DMSO/PdX2,7
PdCl2/CuCl2/PEG,8 KMnO4/NaHCO3,9 SO3/dioxane,10
I2/DMSO,11 O2/Cu,12 and Ga(OTf)3.13 Although they
are efficient methods for quinoxalines, most of them make
use of elevated temperature, prolonged reaction time, toxic
oxidants, and functionalized substrates. Here we devel-
oped a novel method to synthesize quinoxalines with o-
phenylenediamine and phenylacetylene catalyzed by Cu-
(1) Dailey, S.; Feast, J. W.; Peace, R. J.; Sage, I. C.; Till, S.; Wood,
E. L. J. Mater .Chem. 2001, 11, 2238.
(2) (a) Brock, E. D.; Lewis, D. M.; Yousaf, T. I.; Harper, H. H. The
Procter and Gamble Co. WO9951688, 1999. (b) Sonawane, N. D.;
Rangnekar, D. W. J. Heterocycl. Chem. 2002, 39, 303.
(OAc)2 H2O in the presence of bases.
3
(3) (a) Schutz, H. Benzodiazepines; Springer: Heidelberg, 1982. (b)
Landquist, J. K. In Comprehensive Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 1, pp 166ꢀ170.
(c) Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45,
5604. (d) Kim, Y. B.; Kim, Y. H.; Park, J. Y.; Kim, S. K. Bioorg. Med.
Chem. Lett. 2004, 14, 541. (e) He, W.; Meyers, M. R.; Hanney, B.; Spada,
A.; Blider, G.; Galzeinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi,
Z.; Perrone, H. Bioorg. Med. Chem. Lett. 2003, 13, 3097.
(4) Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.;
Barnett, S. F.; Defeo- Jones, D.; Jones, R. E.; Hartman, G. D.; Huff,
J. R.; Huber, H. E.; Duggan, M. E. Bioorg. Med. Chem. Lett. 2005, 15,
761.
(6) (a) Katritzky, A. R.; Zhang, D.; Kirichenko., K. J. Org. Chem.
2005, 70, 3271. (b) Merkul, E.; Dohe, J.; Gers, C.; Rominger, F.; Muller,
T. J. J. Angew. Chem., Int. Ed. 2011, 50, 2966.
(7) Mousset, C.; Provot, O.; Hamze, A.; Brion, J.-D.; Alami, M.
Tetrahedron 2008, 64, 4287.
(8) Chandrasekhar, S.; Kesava Reddy, N.; Praveen Kumar., V.
Tetrahedron Lett. 2010, 51, 3623.
(9) Deng, X.; Mani, N. S. Org. Lett. 2006, 8, 269.
(10) Rogatchov, V. O.; Filimonov, V. D.; Yusubov, M. S. Synthesis
2001, 1001.
(11) Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.;
Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183.
(12) Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28.
(13) Cai, J.; Zou, J. P.; Pan, X. Q.; Zhang, W. Tetrahedron Lett. 2008,
49, 7386.
(5) (a) Porter, A. E. A. In Comprehensive Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; p 157. (b)
Woo, G. H. C.; Snyder, J. K.; Wan, Z. K. Prog. Heterocycl Chem. 2002,
14, 279.
r
10.1021/ol201664x
Published on Web 08/01/2011
2011 American Chemical Society