ORGANIC
LETTERS
2011
Vol. 13, No. 16
4378–4381
Hexaazatriphenylene Derivatives with
Tunable Lowest Unoccupied Molecular
Orbital Levels
Ming Wang,†,‡ Ying Li,†,‡ Hui Tong,*,† Yanxiang Cheng,† Lixiang Wang,*,† Xiabin Jing,†
and Fosong Wang†
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and
Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. China
chemtonghui@ciac.jl.cn; lixiang@ciac.jl.cn
Received June 26, 2011
ABSTRACT
A series of n-type hexaazatriphenylene derivatives were synthesized by condensation coupling of 1,2-diamines and 1,2-diketones. The study of
their photophysical and electrochemical properties showed that their lowest unoccupied molecular orbital (LUMO) energy levels could be
effectively tuned from ꢀ3.54 to ꢀ4.02 eV simply by increasing the number of pyrazine units in their molecular structures.
Organic conjugated compounds are of wide current
interest because of their potential applications in light-
emitting diodes,1,2 organic photovoltaic cells,3,4 and thin
film transistors.5,6 In the past two decades, the vast ma-
jority of research in the field has been devoted to p-type
organic semiconductors.7,8 Only a few n-type organic
molecules have been synthesized and studied, although
n-type organic semiconductors are also very important for
developing the light-emitting diodes, organic photovoltaic
cells, thin film transistors, and so on.9ꢀ15
Recently, n-type organic semiconductors have been
reported, include heteroaromatic compounds,16 fullerene
derivatives,17 naphthalene, and perylene diimides, etc.18
Among them, heterocyclic aromatic compounds including
(9) Hanifi, D.; Cao, D.; Klivansky, L. M.; Liu, Y. Chem. Commun.
2011, 47, 3454–3456.
(10) McMenimen, K. A.; Hamilton, D. G. J. Am. Chem. Soc. 2001,
123, 6453–6454.
† Changchun Institute of Applied Chemistry.
‡ Graduate School of Chinese Academy of Sciences.
(11) Pieterse, K.; van Hal, P. A.; Kleppinger, R.; Vekemans, J.;
Janssen, R. A. J.; Meijer, E. W. Chem. Mater. 2001, 13, 2675–2679.
(12) Kestemont, G.; de Halleux, V.; Lehmann, M.; Ivanov, D. A.;
Watson, M.; Geerts, Y. H. Chem. Commun. 2001, 20, 2074–2075.
(13) Yin, J.; Qu, H. M.; Zhang, K.; Luo, J.; Zhang, X. J.; Chi, C. Y.;
Wu, J. S. Org. Lett. 2009, 11, 3028–3031.
(14) Luo, M.; Shadnia, H.; Qian, G.; Du, X. B.; Yu, D. B.; Ma, D. G.;
Wright, J. S.; Wang, Z. Y. Chem.;Eur. J. 2009, 15, 8902–8908.
(15) Ishi-i, T.; Murakami, K.; Imai, Y.; Mataka, S. Org. Lett. 2005, 7,
3175–3178.
(1) Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M. E.;
Adachi, C. J. Am. Chem. Soc. 2002, 124, 9945–9954.
(2) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151–154.
(3) Leriche, P.; Piron, F.; Ripaud, E.; Frere, P.; Allain, M.; Roncali,
J. Tetrahedron Lett. 2009, 50, 5673–5676.
(4) Mondal, R.; Ko, S.; Norton, J. E.; Miyaki, N.; Becerril, H. A.;
Verploegen, E.; Toney, M. F.; Bredas, J. L.; McGehee, M. D.; Bao, Z. N.
J. Mater. Chem. 2009, 19, 7195–7197.
(5) Babel, A.; Jenekhe, S. A. Adv. Mater. 2002, 14, 371–374.
(6) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002,
14, 99–117.
(7) Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471–1507.
(8) Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. Adv.
Mater. 2003, 15, 33–38.
(16) Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg,
L. J. Science 1995, 267, 1969–1972.
(17) Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008,
47, 58–77.
(18) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J.
J. Am. Chem. Soc. 2007, 129, 15259–15278.
r
10.1021/ol201717d
Published on Web 07/27/2011
2011 American Chemical Society