2504
A. Wolan et al. / Tetrahedron Letters 52 (2011) 2501–2504
9. See also: Simpkins, L. M.; Bolton, S.; Pi, Z.; Sutton, J. C.; Kwon, C.; Zhao, G.;
Magnin, D. R.; Augeri, D. J.; Gungor, T.; Rotella, D. P.; Sun, Z.; Liu, Y.; Slusarchyk,
W. S.; Marcinkeviciene, J.; Robertson, J. G.; Wang, A.; Robl, J. A.; Atwal, K. S.;
Zahler, R. L.; Parker, R. A.; Kirby, M. S.; Hamann, L. G. Bioorg. Med. Chem. Lett.
2007, 17, 6476–6480.
of the Institut de Chimie des Substances Naturelles for their contribu-
tion to this work.
Supplementary data
10. Li, J. J. Name reactions, a collection of detailed reaction mechanisms, third ed.;
Springer: Heidelberg, 2006.
Supplementary data (typical experimental procedures; X-ray
crystal structures of 4a and (S)-1d.HCl; discussion with respect to
the exclusive formation of one diastereoisomer of the N-oxides
4a and 4b; proposed explanation for the differences of behaviour
observed in the subsequent Polonovski reactions; NMR spectra of
all compounds) associated with this article can be found, in the on-
11. Crystallographic data (excluding structure factors) for the structures in this
paper have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication nos. CCDC 802584 and 802585. Copies of the data
can be obtained, free of charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK (fax: +44 (0)1223 336033 or e-mail:
deposit@ccdc.cam.ac.Uk).
12. See the Supplementary data for a discussion and further details.
13. Multi-step conversion of a phenylglycinol moiety into an
a-aminohydrazone,
which then undergoes fragmentation: Mehmandoust, M.; Marazano, C.; Das, B.
C. J. Chem. Soc., Chem. Commun. 1989, 1185–1187.
14. Conversion of a phenylglycinol moiety into a b-amino phenylsulfide, which is
then treated with LiDBB: (a) Meyers, A. I.; Burgess, L. E. J. Org. Chem. 1991, 56,
2294–2296; (b) Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656–1662.
15. Conversion of a phenylglycinol moiety into a b-chloroamine, which is then
submitted to an elimination reaction: (a) Dembélé, Y. A.; Belaud, C.; Villiéras, J.
Tetrahedron: Asymmetry 1992, 3, 511–514; (b) Nyzam, V.; Belaud, C.;
Zammattio, F.; Villiéras, J. Tetrahedron: Asymmetry 1996, 7, 1835–1843; (c)
Agami, C.; Couty, F.; Evano, G. Tetrahedron Lett. 1999, 40, 3709–3712; (d)
Denhez, C.; Vasse, J.-L.; Harakat, D.; Szymoniak, J. Tetrahedron: Asymmetry
2007, 18, 424–434.
References and notes
1. Reviews: (a) Gnad, F.; Reiser, O. Chem. Rev. 2003, 103, 1603–1623;
(b) Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4538–4583; (c)
Hanessian, S.; Auzzas, L. Acc. Chem. Res. 2008, 41, 1241–1251.
2. Selected examples: (a) Grieco, P. A.; Kaufmann, M. D. J. Org. Chem. 1999, 64,
7586–7593; (b) Lee, H. B.; Sung, M. J.; Blackstock, S. C.; Cha, J. K. J. Am. Chem.
Soc. 2001, 123, 11322–11324; (c) Voigt, T.; Winsel, H.; de Meijere, A. Synlett
2002, 1362–1364; (d) De Simone, F.; Gertsch, J.; Waser, J. Angew. Chem., Int. Ed.
2010, 122, 5903–5906. Angew. Chem., Int. Ed. 2010, 49, 5767–5770.
3. Contributions from our group: (a) Larquetoux, L.; Kowalska, J. A.; Six, Y. Eur. J.
Org. Chem. 2004, 3517–3525; (b) Larquetoux, L.; Ouhamou, N.; Chiaroni, A.; Six,
Y. Eur. J. Org. Chem. 2005, 4654–4662; Madelaine, C.; Six, Y.; Buriez, O. Angew.
Chem., Int. Ed. 2007, 119, 8192–8195. Angew. Chem., Int. Ed. 2007, 46, 8046–
8049; (d) Madelaine, C.; Buriez, O.; Crousse, B.; Florent, I.; Grellier, P.;
Retailleau, P.; Six, Y. Org. Biomol. Chem. 2010, 8, 5591–5601.
4. Reviews: (a) Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789–
2834; (b) de Meijere, A.; Kozhushkov, S. I.; Savchenko, A. I. In Titanium and
Zirconium in Organic Synthesis In Marek, I., Ed.; Wiley-VCH: Weinheim, 2002.
pp 390–434; (c) de Meijere, A.; Kozhushkov, S. I.; Savchenko, A. I. J. Organomet.
Chem. 2004, 689, 2033–2055; (d) Wolan, A.; Six, Y. Tetrahedron 2010, 66, 15–61.
5. For recent examples of alternative methods for the synthesis of fused bicyclic
aminocyclopropane derivatives, see: (a) Couty, S.; Meyer, C.; Cossy, J. Synlett
2007, 2819–2822; (b) Couty, S.; Meyer, C.; Cossy, J. Tetrahedron 2009, 65, 1809–
1832; (c) Bertus, P.; Szymoniak, J. Org. Lett. 2007, 9, 659–662; (d) Joosten, A.;
Vasse, J.-L.; Bertus, P.; Szymoniak, J. Synlett 2008, 2455–2458; (e) Astashko, D.;
Lee, H. G.; Bobrov, D. N.; Cha, J. K. J. Org. Chem. 2009, 74, 5528–5532; (f)
Mykhailiuk, P. K.; Afonin, S.; Palamarchuk, G. V.; Shishkin, O. V.; Ulrich, A. S.;
Komarov, I. V. Angew Chem., Int. Ed. 2008, 120, 5849–5851. Angew. Chem., Int.
Ed. 2008, 47, 5765–5767; see also references 7 and 8 of the present article.
6. (a) Vilsmaier, E.; Goerz, T. Synthesis 1998, 739–744; (b) Barluenga, J.; Aznar, F.;
Gutiérrez, I.; García-Granda, S.; Llorca-Baragaño, M. A. Org. Lett. 2002, 4, 4273–
4276; (c) Faler, C. A.; Cao, B.; Joullié, M. M. Heterocycles 2006, 67, 519–522; (d)
Brackmann, F.; Colombo, N.; Cabrele, C.; de Meijere, A. Eur. J. Org. Chem. 2006,
4440–4450.
16. Conversion of
a phenylglycinol moiety into a mesylate, which is then
submitted to an elimination reaction: Fains, O.; Vernon, J. M. Tetrahedron
Lett. 1997, 38, 8265–8266.
17. Conversion of a phenylglycinol moiety into an arylselenide, which is then
oxidised to trigger an elimination reaction: Bragg, R. A.; Clayden, J.; Bladon, M.;
Ichihara, O. Tetrahedron Lett. 2001, 42, 3411–3414.
18. Reviews on the use of t-BuOK in DMSO: (a) Pearson, D. E.; Buehler, C. A. Chem.
Rev. 1974, 74, 45–86; (b) Caine, D. In e-EROS Encyclopedia of Reagents for
Organic Synthesis; Paquette, L. A., Ed.-in-Chief; John Wiley & Sons, Ltd.; article
19. It is not clear at this stage, whether the elimination reaction proceeds
according to an E2 mechanism, or E1cB. The fact that the methoxy group is a
poor leaving group would rather support the latter.
20. Vilaivan, T.; Winotapan, C.; Banphavichit, V.; Shinada, T.; Ohfune, Y. J. Org.
Chem. 2005, 70, 3464–3471. As is reported in this article, the allylation reaction
proceeds with much higher diastereoselectivity (98:2) using the same imine
substituted with a 2-hydroxy-1-phenylethyl group rather than a 2-methoxy-1-
phenylethyl group. We nonetheless chose the latter, because we were hoping
we would be able to separate the diastereoisomers of the homoallylamine
products, or of the corresponding acetamides 3f. This would have enabled us to
synthesise both enantiomers of the secondary cyclopropylamine 1f.
21. The mixture of diastereoisomeric amines was recovered unchanged under
several standard acylating conditions: Ac2O in pyridine at 20 °C, AcCl in CH2Cl2
at 20 °C in the presence of NaOH aqueous solution, and AcCl/Et3N in CHCl3 at
reflux.
22. Madelaine, C.; Buzas, A. K.; Kowalska-Six, J. A.; Six, Y.; Crousse, B. Tetrahedron
Lett. 2009, 50, 5367–5371.
23. (a) Cho, S. Y.; Lee, J.; Lammi, R. K.; Cha, J. K. J. Org. Chem. 1997, 62, 8235–8236;
(b) Bertus, P.; Szymoniak, J. Synlett 2003, 265–267; (c) Cadoret, F.; Six, Y.
Tetrahedron Lett. 2007, 48, 5491–5495.
7. Ouizem, S. Ph.D. Dissertation, Thèse de l’Université Pierre et Marie Curie, Paris,
2010.
8. Ouizem, S.; Cheramy, S.; Botuha, C.; Chemla, F.; Ferreira, F.; Pérez-Luna, A.
Chem. Eur. J. 2010, 16, 12668–12677.