for other kinetic runs, including 15-D2, and kH/kD determined.
Rates of substrate consumption were also determined by UV,
and were comparable.
25 T. Gunnlaugsson, H. Q. N. Gunaratne, M. Nieuwenhuyzen and J. P.
Leonard, J. Chem. Soc., Perkin Trans. 1, 2002, 1954–1962.
26 R. J. Kaptein, J. Chem. Soc. D, 1971, 732–733.
27 A. H. Clemens, P. Helsby, J. H. Ridd, F. Al-Omran and J. P. Sandall,
J. Chem. Soc., Perkin Trans. 2, 1985, 1217–1225.
28 A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc., Chem.
Commun., 1983, 343–344.
29 A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc., Perkin
Trans. 2, 1984, 1667–1672.
30 A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc., Perkin
Trans. 2, 1984, 1659–1665.
Determination of the reaction order in nitrite. In a typical
experiment, 15 (13.7 mM) and internal standard (4.2 mM) in
75% HOAc–3.6 M H2SO4 was stirred at 23 ◦C, and reacted with
the following concentrations of NaNO2: 0.69 M, 0.35 M, 0.38 M,
0.45 M, 0.48 M, 0.55 M. A plot of ln (k) against ln [NaNO2]
gave straight lines for 15 and for both nitrosamines. The results
were corroborated by UV.
31 A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc., Perkin
Trans. 2, 1985, 1227–1231.
32 J. H. Ridd, Chem. Soc. Rev., 1991, 20, 149–165.
33 L. Eberson, M. P. Hartshorn and F. Radner, Acta Chem. Scand.,
1994, 48, 937–950.
Supporting Information
Explanations of CIDNP, and additional experimental details for
kinetics experiments, syntheses of several known compounds,
and N2O determinations are given.
34 B. C. Challis, R. J. Higgins and A. J. Lawson, J. Chem. Soc. D, 1970,
1223–1224.
35 B. C. Challis, R. J. Higgins and A. J. Lawson, J. Chem. Soc., Perkin
Trans. 2, 1972, 1831–6.
36 B. C. Challis and R. J. Higgins, J. Chem. Soc., Perkin Trans. 2, 1973,
1597–1604.
Acknowledgements
We thank Dr Jim Iley of the Department of Chemistry, The Open
University, UK, for his most thoughtful and careful critique of
this work. We also wish to acknowledge the generous support
of this research by the National Cancer Institute, NIH, under
grants R37CA26914 and R01CA85538.
37 In strong acid, e.g. 75% HOAc containing 3 M HClO4, we have
observed the ratio of the nitro product to the nitrosamines to increase
with time while neither the reaction rate nor the nitrosamine product
ratio changes. The mechanism of this process is uncertain.
38 D. H. L. Williams, Nitrosation, Cambridge University Press, Cam-
bridge, 1988.
39 J. Casado, A. Castro, M. Mosquera and M. Rodriguez-Prieto,
Monatsh. Chem., 1984, 115, 669–682.
40 L. R. Dix and D. L. H. Williams, J. Chem. Res., S., 1982, 190–191.
41 K. H. Becker, R. Kleffmann and P. Kurtenbach, J. Phys. Chem., 1996,
100, 14984–14990.
42 F. D. Lewis and T.-I. Ho, J. Am. Chem. Soc., 1980, 102, 1751.
43 J. D. S. Goulden and D. J. Millen, J. Chem. Soc., 1950, 2620–2627.
44 A. Givan and A. Loewenschuss, J. Chem. Phys., 1989, 91, 5126–
5127.
45 D. J. Millen and D. Watson, J. Chem. Soc., 1957, 1369–1372.
46 M. a. Zolfigol, M. H. Zebarjadian, G. Chehardoli, H. Keypour, S.
Salehzadeh and M. Shamsipur, J. Org. Chem., 2001, 66, 3619–3620.
47 P. Gray and A. D. Yoffe, Chem. Rev., 1955, 55, 1069–1154.
48 B. C. Challis and S. A. Kyrtopoulos, J. Chem. Soc., Perkin Trans. 1,
1978, 1296–302.
References
1 H. Druckrey, R. Preussmann, S. Ivankovic and D. Schmaehl,
Z. Krebsforsch., 1967, 69, 103–201.
2 H. Bartsch and R. Montessano, Carcinogenesis (London), 1984, 5,
1381–1393.
3 R. N. Loeppky and C. J. Michejda, Nitrosamines and related N-nitroso
compounds: chemistry and biochemistry, American Chemical Society,
Washington DC, 1994.
4 R. N. Loeppky, Y. T. Bao, J. Y. Bae, L. Yu and G. Shevlin, in
Nitrosamines and Related N-Nitroso Compounds: Chemistry and
Biochemistry, R. N. Loeppky and C. J. Michejda, Eds., American
Chemical Society, Washington, DC, 1994, p 52–65.
5 H. Bartsch, H. Ohshima, B. Pignatelli and S. Calmels, Cancer Surv.,
1989, 8, 335–362.
6 R. N. Loeppky, R. Hastings, J. Sandbothe, D. Heller, Y. Bao and D.
Nagel, IARC Sci. Publ., 1991, 105, 244–252.
7 R. Hastings and R. N. Loeppky, unpublished laboratory report.
8 P. A. S. Smith and R. N. Loeppky, J. Am. Chem. Soc., 1967, 89,
1147–1157.
9 B. Gowenlock, R. J. Hutcheson, J. Little and J. Pfab, J. Chem. Soc.,
Perkin Trans. 2, 1979, 1110–1114.
10 R. N. Loeppky, S. P. Singh, S. Elomari, R. Hastings and T. E. Theiss,
J. Am. Chem. Soc., 1998, 120, 5193–5202.
11 R. N. Loeppky and S. Elomari, J. Org. Chem., 2000, 65, 96–103.
12 G. Verardo, A. G. Giumanini and P. Strazzolini, Tetrahedron, 1991,
47, 7845–7852.
13 G. Verardo, A. G. Giumanini and P. Strazzolini, Tetrahedron, 1990,
46, 4303–4332.
14 H. H. Hodgson and D. E. Nicholson, J. Chem. Soc., 1941, 470–475.
15 J. R. Lindsay Smith and L. A. V. Mead, J. Chem. Soc., Perkin Trans.
2, 1973, 206–210.
49 B. C. Challis and S. A. Kyrtopoulos, J. Chem. Soc., Perkin Trans. 1,
1979, 299–304.
50 B. C. Challis, D. E. G. Shuker, D. H. Fine, E. U. Goff and G. A.
Hoffman, IARC Sci. Publ., 1982, 41, 11–20.
51 I. Tohru, T. Kawabata and M. Matsui, Nippon Suisan Gakkaishi,
1984, 50, 1425–1429.
52 W. A. Pryor, J. W. Lightsey and D. F. Church, J. Am. Chem. Soc.,
1982, 104, 6685–6692.
53 E. T. Denisov, T. G. Denisova, Y. V. Geletii and J. Balavouane, Kinet.
Catal., 1998, 39, 312–319.
54 V. D. Parker, J. Am. Chem. Soc., 1992, 114, 7458–7462.
55 H. Suzuki and N. Nonoyama, J. Chem. Soc., Perkin Trans. 1, 1997,
2965–2971.
56 S. F. Nelsen and J. T. Ippoliti, J. Am. Chem. Soc., 1986, 108, 4879–
4881.
57 R. W. Alder, M. Bonifacic and K. D. Asmus, J. Chem. Soc., Perkin
Trans. 2, 1986, 277–284.
58 S. F. Nelsen and J. T. Ippoliti, J. Org. Chem., 1986, 51, 3169–3176.
59 L. K. Keefer and P. P. Roller, Science, 1973, 181, 1245–1247.
60 J. C. Treacy and F. Daniels, J. Am. Chem. Soc., 1955, 77, 2033–2036.
61 B. Lamm, Acta. Chem. Scand., 1966, 19, 2316–2322.
62 R. N. Loeppky and P. Goelzer, Chem. Res. Toxicol., 2002, 15, 457–
469.
63 R. L. Bent, J. C. Dessloch, F. C. Duennebier, D. W. Fassett, D. B.
Glass, T. H. James, D. B. Julian, W. R. Ruby and J. M. Snell, J. Am.
Chem. Soc., 1951, 73, 3100–3125.
16 J. R. Lindsay Smith and D. Masheder, J. Chem. Soc., Perkin Trans.
2, 1976, 47–51.
17 C. A. Audeh and J. R. Lindsay Smith, J. Chem. Soc. B, 1970, 1280–
1285.
18 J. P. Dinnocenzo and T. E. Banach, J. Am. Chem. Soc., 1989, 111,
8646–8653.
19 V. D. Parker and M. Tilset, J. Am. Chem. Soc., 1991, 113, 8778–8781.
20 B. G. Gowenlock, J. Pfab and V. M. Young, J. Chem. Soc., Perkin
Trans. 2, 1997, 1793.
21 N. Nonoyama, K. Chiba, K. Hisatome, H. Suzuki and F. Shintani,
Tetrahedron Lett., 1999, 40, 6933–6937.
64 T. W. Campbell, J. Am. Chem. Soc., 1949, 71, 740.
65 E. W. Day, T. Golab and J. R. Koons, Anal. Chem., 1966, 38, 1053–
1057.
22 B. P. Cho, L. R. Blankenship, J. D. Moody, D. R. Doerge, F. A.
Beland and S. Culp, Tetrahedron, 2000, 56, 7379–7388.
23 N. Nonoyama, K. Hisatome, C. Shoda and H. Suzuki, Tetrahedron
Lett., 1999, 40, 6939–6940.
24 N. Nonoyama, H. Oshima, C. Shoda and H. Suzuki, Bull. Chem.
Soc. Jpn., 2001, 74, 2385–2395.
66 G. R. Clemo and J. M. Smith, J. Chem. Soc., 1928, 2415.
67 R. F. Nystrom and C. R. A. Berger, J. Am. Chem. Soc., 1958, 80,
2896–2898.
68 J. A. Moore, D. L. Dalrymple, Experimental Methods in Organic
Chemistry, 2nd edition, W. B. Saunders Co., Philadelphia, 1976.
69 W. Cui and R. N. Loeppky, Tetrahedron, 2000, 57, 2953–2956.
1 1 0 8
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 0 9 7 – 1 1 0 8