ACS Medicinal Chemistry Letters
LETTER
(16) Ninomiya-Tsuji, J.; Kajino, T.; Ono, K.; Ohtomo, T.; Matsumoto,
M.; Shiina, M.; Mihara, M.; Tsuchiya, M.; Matsumoto, K. A resorcyclic
acid lactone, 5-Z-7-oxozeaenol, prevents inflammation by inhibiting the
catalytic activivity of TAK1MAPK kinase kinase. J. Biol. Chem. 2003,
278, 18485–18490.
(17) Jogireddy, R.; Barluenga, S.; Winssinger, N. Molecular editing
of kinase-targeting resorcylic acid lactones (RAL): Fluoroenone RAL.
ChemMedChem 2010, 5, 670–673.
(18) Shen, Y.; Boivin, R.; Yoneda, N.;Du, H.; Schiller, S.; Matsushima,
T.; Goto, M.; Shirota, H.; Gusovsky, F.; Lemelin, C.; Jiang, Y.; Zhang, Z.;
Pelletier, R.; Ikemori-Kawada, M.; Kawakami, Y.; Inoue, A.; Schnader-
beck, M.; Wang, Y. Discovery of antiinflammatory clinical candidate
E6201, inspired from resorcylic lactone LL-Z1640-2, III. Bioorg. Med.
Chem. Lett. 2010, 20, 3155–3157.
(19) Ikemori-Kawada, M.; Kawai, T.; Goto, M.; Wang, Y. J.;
Kawakami, Y. Conformational analyses and MO studies of f152A1
and its analogues as potent protein kinase inhibitors. J. Chem. Inf. Model.
2009, 49, 2650–2659.
(20) Zhao, A.; Lee, S. H.; Mojena, M.; Jenkins, R. G.; Patrick, D. R.;
Huber, H. E.; Goetz, M. A.; Hensens, O. D.; Zink, D. L.; Vilella, D.;
Dombrowski, A. W.; Lingham, R. B.; Huang, L. Resorcylic acid lactones:
Naturally occurring potent and selective inhibitors of MEK. J. Antibiot.
1999, 52, 1086–1094.
(21) Liniger, M.; Neuhaus, C.; Hofmann, T.; Fransioli-Ignazio, L.;
Jordi, M.; Drueckes, P.; Trappe, J.; Fabbro, D.; Atlmann, K.-H. Kinase
inhibition by deoxy analogues of the resorcylic lactone L-783277. ACS
Med. Chem. Lett. 2011, 2, 22–27.
(22) Schirmer, A.; Kennedy, J.; Murli, S.; Reid, R.; Santi, D. V.
Targeted covalent inactivation of protein kinases by resorcylic acid
lactone polyketides. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 4234–4239.
(23) Ohori, M.; Kinoshita, T.; Yoshimura, S.; Warizaya, M.;
NakajimaH.; Miyake, H. Role of a cysteine residue in the active site of ERK
and the MAPKK family. Biochem. Biophys. Res. Commun. 2007, 353, 633–637.
(24) Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M. Aigialomycins
A-E, new resorcylic macrolides from the marine mangrove fungus
Aigialus parvus. J. Org. Chem. 2002, 67, 1561–1566.
(36) Parcells, B. W.; Ikeda, A. K.; Simms-Waldrip, T.; Moore, T. B.
FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid
leukemia. Stem Cells 2006, 24, 1174–1184.
(37) Scheper, G. C.; Morrice, N. A.; Kleijn, M; Proud, C. G. The
mitogen activated protein kinase signal-integrating kinase Mnk2 is an
eukaryotic initiation factor 4E kinase with high levels of basal activity in
mammalian cells. Mol. Cell. Biol. 2001, 21, 743–754.
(38) Jauch, R.; Cho, M.-K.; Jakel, S.; Netter, C.; Schreiter, K.; Aicher,
B.; Zweckstetter, M.; Jackle, H.; Wahl, M. C. Mitogen-activated protein
kinases interacting kinases are autoinhibited by a reproprammed activa-
tion segment. EMBO J. 2006, 25, 4020–4032.
(39) Parra, J. L.; Buxade, M.; Proud, C. G. Features of the catalytic
domains and C termini of the MARK singal-intergrating kinases Mnk1
and Mnk2 determine their differing activites and regulatory properties.
J. Biol. Chem. 2005, 280, 37623–37833.
(40) Rosario, C. O.; Ko, M. A.; Haffani, Y. Z.; Gladdy, R. A.;
Paderova, J.; Pollett, A.; Squire, J. A.; Dennis, J. W.; Swallow, C. J.
Plk4 is required for cytokinesis and maintenance of chromosomal
stability. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 6888–6893.
(41) Holland, A. J.; Lan, W.; Niessen, S.; Hoover, H.; Cleveland,
D. W. Polo-like kinase 4 kinase activity limits centrosome overduplica-
tion by autoregulating its own stability. J. Cell Biol. 2010, 188, 191–198.
(42) Strebhardt, K. Multifaceted polo-like kinases: drug targets and
antitargets for cancer therapy. Nat. Rev. Drug Discovery 2010, 9,
633–660.
(43) De Benedetti, A.; Graff, J. R. eIF-4E expression and its role in
malignancies and metastases. Oncogene 2004, 23, 3189–3199.
(44) von der Haar, T.; Gross, J. D.; Wagner, G.; McCarthy, J. E. The
m-RNA cap-binding protein eIF4E in post-transcriptional gene expres-
sion. Nat. Struct. Mol. Biol. 2004, 11, 503–511.
(25) Geng, X.; Danishefsky, S. J. Total synthesis of aigialomycin D.
Org. Lett. 2004, 6, 413–416.
(26) Barluenga, S.; Dakas, P.-Y.; Ferandin, Y.; Meijer, L.; Winssinger,
N. Modular asymmetric synthesis of aigialomycin D, a kinase-inhibitory
scaffold. Angew. Chem., Int. Ed. 2006, 45, 3951–3954.
(27) Vu, N. Q.; Chai, C. L. L.; Lim, K. P.; Chia, S. C.; Chen, A. An
efficient and practical total synthesis of aigialomycin D. Tetrahedron
2007, 63, 7053–7058.
(28) The preparation of Weinreb amides 9 and 10 was prepared
according to procedures described in ref 27.
(29) Malumbres, M.; Pevarello, P.; Barbacid, M.; Bischoff, J. R. CDK
inhibitors in cancer therapy: What is next? Trends Pharmacol. Sci. 2007,
29, 16–21.
(30) McInnes, C. Progress in the evaluation of CDK inhibitors as
anti-tumor agents. Drug Discovery Today 2008, 13, 875–811.
(31) Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic
targets for cancer. Nat. Rev. Drug Discovery 2009, 8, 309–315.
(32) Aoyama, T.; Terasawa, S.; Sudo, K.; Shioiri, T. New methods
and reagents in organic synthesis, 46. Trimethylsilyldiazomethane: A
convenient reagent for the O-methylation of phenols and enols. Chem.
Pharm. Bull. 1984, 32, 3759–3760.
(33) Wee, X. K.; Yeo, W. K.; Zhang, B.; Tan, V. B. C.; Lim, K. M.;
Tay, T. E.; Go, M.-L. Synthesis and evaluation of functionalized
isoindigos as antiproliferative agents. Biol. Med. Chem. 2009, 17, 7562–7571.
(34) Gjerdrum, C.; Tiron, C.; Hoiby, T.; Stefansson, I.; Haugen, H.;
Sandal, T.; Collett, K.; Li, S.; McCormack, E.; Gjertsen, B. T.; Micklem,
D. R.; Akslen, L. A.; Glackin, C.; Lorens, J. B. AXL is an essential
epithelial-to-mesenchymal transition-induced regulator of breast cancer
metastasis and patient survival. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 1124–1129.
(35) Pratz, K. W.; Levis, M. J. Bench to bedside targeting of FLT3 in
acute leukemia. Curr. Drug Targets 2010, 11, 781–789.
666
dx.doi.org/10.1021/ml200067t |ACS Med. Chem. Lett. 2011, 2, 662–666