Organic Letters
Letter
The mild and efficient reaction conditions allow for the
introduction of a readily deprotectable amino source on a range
of pyridine scaffolds. Furthermore, the synthetic value of 2-halo
substituted pyridines is demonstrated by their successful late
stage derivatization into a variety of highly functionalized
scaffolds.
Scheme 5. 2-Oxazoline Substituted Pyridines
ASSOCIATED CONTENT
* Supporting Information
■
S
Scheme 6. Post C−H Amidation Functionalization
The Supporting Information is available free of charge on the
Experimental procedures and characterization data
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We gratefully acknowledge GlaxoSmithKline and the EPSRC
for financial support.
■
REFERENCES
■
(1) For representative examples of N-heterocycle synthesis from
anthranilic acid derivatives, see: (a) Vicente, R. Org. Biomol. Chem.
2011, 9, 6469−6480. (b) Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.;
Panchal, S. N.; Patel, H. D. RSC Adv. 2014, 4, 24463−24476.
(c) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J.
Tetrahedron 2005, 61, 10153−10202.
of the trifluoroacetamide to the corresponding aniline was
achieved successfully on both 2-Cl and 2-Br substrates 2 and 6
in excellent yield. Most pleasingly, SNAr reactions were found
to be successful with both alcohol and amine based
nucleophiles, affording 23 and 24 in good to excellent yields.13
Despite the potential of these compounds to form strong
complexes with transition metal catalysts, we were delighted
that both Suzuki and Fe-catalyzed cross-coupling pathways
were viable affording aryl and alkyl substituted pyridines 25 and
26.14 Moreover, removal of the 2-Cl substituent could be
readily achieved affording the parent unsubstituted pyridine 27
in 69% yield.15 Overall and importantly, the transformation of
2-halo pyridines 21−22 to products 23−27 allows us to
circumvent some of the limitations associated with 3-oxazoline
directed C−H amidations shown in Scheme 3.
(2) For representative reviews on C−H activation, see: (a) Chen, X.;
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48,
5094−5115. (b) De Sarkar, S. D.; Liu, W.; Kozhushkov, I.;
Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461−1479. (c) Song,
G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651−3678.
(d) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48,
1053−1064. (e) Lyons, T. W.; Sanford, M. Chem. Rev. 2010, 110,
1147−1169. (f) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A.
Acc. Chem. Res. 2012, 45, 814−825.
(3) For C−H activation approaches to anthranilic acid derivative
synthesis, see: (a) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem.
Soc. 2010, 132, 12862−12864. (b) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-
J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466−1474. (c) Ryu, J.; Shin,
K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51,
9904−9908. (d) Grohmann, C.; Wang, H.; Glorius, F. Org. Lett. 2013,
15, 3014−3017. (e) Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53,
2203−2207. (f) Giri, R.; Lam, J. K.; Yu, J.-Q. J. Am. Chem. Soc. 2010,
132, 686−693.
Finally, we were able to prepare functionalized quinazolinone
28 in good yield, utilizing our previously reported conditions
on substrate 16 (Scheme 7).4 This highlights the ability to
Scheme 7. Azaquinazolinone Synthesis
(4) Maiden, T. M. M.; Swanson, S.; Procopiou, P. A.; Harrity, J. P. A.
Chem. - Eur. J. 2015, 21, 14342−14346.
(5) Mei, R.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793−797.
(6) Qin, Q.; Yu, S. Org. Lett. 2014, 16, 3504−3507.
(7) Shang, M.; Zeng, S.-H.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Org. Lett.
2013, 15, 5286−5289.
(8) Matsubara, T.; Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc.
2014, 136, 646−649.
exploit this chemistry to successfully prepare otherwise difficult
to access heterocyclic scaffolds that bear versatile functionality
for further derivatization.16
In summary, we have reported on the first example of
rhodium-catalyzed C−H amidation of pyridines that allows
valuable scaffolds to be generated with high regioselectivities.
(9) For reported C−H amidation upon pyridines, see: (a) Shang, M.;
Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354−
3357. (b) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed.
2013, 52, 6043−6046. (c) Roane, J.; Daugulis, O. J. Am. Chem. Soc.
2016, 138, 4601−46−47.
C
Org. Lett. XXXX, XXX, XXX−XXX