Organic Letters
Letter
a
The UV−vis absorption and emission spectra of 3q, 3r, 3s,
and 3t in highly dilute solution were collected (in ESI).
In conclusion, we have developed an efficient and convenient
Cu-catalyzed one-pot domino reaction from 1-(2-halophenyl)-
1H-pyrroles and readily available α-amino acids for the
synthesis of pyrrolo[1,2-a]quinoxalines in air. The domino
process includes Ullmann-type N-arylation, aerobic oxidation,
intramolecular addition, and decarboxylation. It is interesting
that the intramolecular addition step was achieved under
conditions with a base rather than an acid. By further
elaboration and diversification of the various functional groups,
a wide range of N-heterocycles can be produced. This Cu-
catalyzed one-pot process has potential applications in the
synthesis of biologically and medicinally relevant compounds.
Table 4. Preparation of Compounds 3q−t
b
entry
1
3
yield, %
1
2
3
4
5
6
R3 = H, R4 = H, X = I, 1l
3q
3q
3r
3r
3s
3t
74
63
84
65
56
48
R3 = H, R4 = H, X = Br, 1m
R3 = H, R4 = 3-Me, X = I, 1n
R3 = H, R4 = 3-Me, X = Br, 1o
R3 = H, R4 = 6-Cl, X = I, 1p
R3 = 4-Me, R4 = H, X = Br, 1q
a
Reaction conditions: 1 (0.3 mmol), 2a (1.2 mmol), Cu(OAc)2 (0.06
ASSOCIATED CONTENT
■
mmol), K3PO4 (1.5 mmol), DMSO (3 mL), 4 Å MS, under air, 3 h.
S
* Supporting Information
b
Isolated yield.
Experiment details, spectra data, UV−vis absorption and
emission spectra, and 1H and 13C NMR spectra. The
Supporting Information is available free of charge on the
3-Me group increased the nucleophilicity of the ring system,
which facilitates intramolecular attack of the C-2 position of the
indole to afford the cyclized products.
An assumed pathway for the formation of pyrrolo[1,2-
a]quinoxaline derivatives is illustrated in Scheme 2 according to
AUTHOR INFORMATION
■
Scheme 2. Proposed Reaction Mechanism
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Science Foundation of China
(No. 21172131) and the State Key Laboratory of Natural and
Biomimetic Drugs of Peking University (No. K20140208) for
financial support of this research.
REFERENCES
■
(1) Guillon, J.; Le Borgne, M.; Rimbault, C.; Moreau, S.;
Savrimoutou, S.; Pinaud, N.; Baratin, S.; Marchivie, M.; Roche, S.;
Bollacke, A.; Pecci, A.; Alvarez, L.; Desplat, V.; Jose, J. Eur. J. Med.
Chem. 2013, 65, 205−222.
(2) Xu, H.; Fan, L.-l. Eur. J. Med. Chem. 2011, 46, 1919−1925.
(3) Guillon, J.; Boulouard, M.; Lisowski, V.; Stiebing, S.; Lelong, V.;
Dallemagne, P.; Rault, S. J. Pharm. Pharmacol. 2000, 52, 1369−1375.
(4) (a) Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Leger, J.-M.;
Deprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaitre, N.;
Pehourcq, F.; Rochette, J.; Sergheraert, C.; Jarry, C. J. Med. Chem.
2004, 47, 1997−2009. (b) Guillon, J.; Mouray, E.; Moreau, S.; Mullie,
C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.;
Le-Naour, A.; Leger, J.-M.; Gosmann, G.; Jarry, C.; Deleris, G.;
Sonnet, P.; Grellier, P. Eur. J. Med. Chem. 2011, 46, 2310−2326.
(c) Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre, S.
B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. Bioorg. Med.
Chem. 2008, 16, 9133−9144. (d) Guillon, J.; Forfar, I.; Mamani-
Matsuda, M.; Desplat, V.; Saliege, M.; Thiolat, D.; Massip, S.;
Tabourier, A.; Leger, J.-M.; Dufaure, B.; Haumont, G.; Jarry, C.;
Mossalayi, D. Bioorg. Med. Chem. 2007, 15, 194−210.
(5) Guillon, J.; Dallemagne, P.; Pfeiffer, B.; Renard, P.; Manechez, D.;
Kervran, A.; Rault, S. Eur. J. Med. Chem. 1998, 33, 293−308.
(6) (a) Prunier, H.; Rault, S.; Lancelot, J.-C.; Robba, M.; Renard, P.;
Delagrange, P.; Pfeiffer, B.; Caignard, D.-H.; Misslin, R.; Guardiola-
Lemaitre, B.; Hamon, M. J. Med. Chem. 1997, 40, 1808−1819.
(b) Butini, S.; Budriesi, R.; Hamon, M.; Morelli, E.; Gemma, S.;
Brindisi, M.; Borrelli, G.; Novellino, E.; Fiorini, I.; Ioan, P.; Chiarini,
the results above and previous research.18 First, the Cu-
catalyzed Ullmann-type coupling reaction occurs between
substrates 1 and 2 to afford intermediate I. Next, I can
undergo two pathways (route A and route B). Through route
A, aerobic oxidation of I leads to II, then intramolecular
addition of II affords III, and decarboxylation of III gives final
product 3. Through route B, decarboxylation of I gives IV.
Subsequently intramolecular addition of IV yields V. Finally,
aerobic oxidation of V provides 3.
C
Org. Lett. XXXX, XXX, XXX−XXX