JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
molecules to appropriate polymeric nets, these supramolecu-
lar phenomena can be easily performed in water.
The authors gratefully acknowledge financial support provided
by the Spanish MICINN (Ministerio de Ciencia e Innovacio´n)-
FEDER (MAT2008-00946) and by the Junta de Castilla y Leo´n
(BU001A10-2).
REFERENCES AND NOTES
1 Tulinsky, A. Semin Thromb Hemostasis 1996, 22, 117–124.
2 Britschgi, M.; von Greyerz, S.; Burkhart, C.; Pichler, W. J.
Curr Drug Targets 2003, 4, 1–11.
3 Cudic, P.; Behenna, D. C.; Kranz, J. K.; Kruger, R. G.; Wand,
A. J.; Veklich, Y. I.; Weisel, J. W.; McCafferty, D. G. Chem Biol
2002, 9, 897–906.
FIGURE 8 Effect of cation concentration on the difference
between the molar conductivities of Hg2þ and Pb2þ in the pres-
ence (Kexp) and the absence (K0) of polymer ICOOH. DK ¼ Kexp
ꢁ K0 (solvent: water, buffered at pH ¼ 7.0).
4 Sundberg, E. J.; Mariuzza, R. A. Adv Protein Chem 2002, 61,
119–160.
5 Jimenez, R.; Salazar, G.; Baldridge, K. K.; Romesberg, F. E.
be ascribed to reduced mobility of the cationic species aris-
ing from interaction between the cations and the host motifs.
The variation in the molar conductivity reaches its maxi-
mum, making a plateau, when all of the host motifs are
interacting with metal cations. The initial steep slope of the
curve suggests that the complexes between the polymer
motifs and the cations were very stable. The DK value pla-
teaued at a cation/host motif ratio of ꢃ0.5 for Hg2þ and 1
for Pb2þ. This result could be tentatively attributed to cat-
ion/host motif interactions with stoichiometries of 1:2 for
Hg2þ and 1:1 for Pb2þ. The stoichiometry corresponding to
the Hg2þ was also observed by Hung et al. in a chemosensor
containing a bis-1,2,3-triazole receptor motif,38,45 and the
interaction of a Hg2þ–triazole complex was characterized by
different researchers by means of determining its chemical
structure using the single crystal X-ray diffraction tech-
nique.39,46 Nevertheless, we are cautious in suggesting this
interpretation because of the complexity of the system. Con-
ductivity studies of the deprotonated polymer, ICOO-, could
not be carried out because of precipitation upon the addition
of the salts.
Proc Natl Acad Sci USA 2003, 100, 92–97.
6 Steed, J. W.; Atwood, J. L. In Supramolecular Chemistry,
2nd ed.; Wiley: Chichester, 2009.
7 Schneider, H. J.; Yatsimirsky, A. In Principles and Methods in
Supramolecular Chemistry; Wiley: Chichester, 2000.
8 Chiu, Y. H.; Liu, J. H. J Polym Sci Part A: Polym Chem 2010,
48, 3368–3374.
9 Huang, X.; Meng, J.; Dong, Y.; Cheng, Y.; Zhu, C. J Polym
Sci Part A: Polym Chem 2010, 48, 997–1006.
10 Garc´ıa, J. M.; Garc´ıa, F. C.; Serna, F.; de la Pen˜ a, J. L. Polym
Rev, in press.
11 Garc´ıa-Acosta, B.; Garc´ıa, F.; Garc´ıa, J. M.; Mart´ınez-Ma´n˜ ez,
R.; Sanceno´ n, F.; San-Jose´, N.; Soto, J. Org Lett 2007, 9,
2429–2432.
12 Garc´ıa, F.; Garc´ıa, J. M.; Garc´ıa-Acosta, B.; Mart´ınez-Ma´n˜ ez,
R.; Sanceno´ n, F.; Soto, J. Chem Commun 2005, 2790–2792.
13 Vallejos, V; Este´vez, P.; Garc´ıa, F. C.; Serna, F.; de la Pen˜ a,
J. L.; Garc´ıa, J. M. Chem Commun 2010, 46, 7951–7953.
14 Vallejos, S.; El Kaoutit, H.; Este´vez, P.; Garc´ıa, F. C.; de la
Pen˜ a, J. L.; Serna, F.; Garc´ıa, J. M. Polym Chem 2011, 2,
1129–1138.
CONCLUSIONS
A water-insoluble organic molecule (3) with pendant 1,2,4-
triazole and acid group moieties as host or receptor motifs
was polymerized with hydrophilic acrylic comonomers to
yield a water-soluble linear copolymer and two water-
insoluble cross-linked materials, a powder and a hydrophilic
membrane or film that both exhibited gel behavior. The
cross-linked powder was used for the extraction or removal
of environmentally deleterious cations from aqueous media.
The membrane, in the form of film strips, was used as for
the colorimetric detection of aqueous Fe3þ by the naked eye.
Upon swelling with water, both cross-linked copolymer mate-
rials permitted solvated cations to diffuse into the swelled
network and reach the highly hydrophobic organic sensing
motifs, giving rise to the recognition or extraction phenom-
ena. Following this procedure of anchoring organic sensing
15 San-Jose´, N.; Go´ mez-Valdemoro, A.; Caldero´ n, V.; de la
Pen˜ a, J. L.; Serna, F.; Garc´ıa, F. C.; Garc´ıa, J. M. Supramol
Chem 2009, 21, 337–343.
16 San-Jose´, N.; Go´ mez-Valdemoro, A.; Ibeas, S.; Serna, F.;
Garc´ıa, F. C.; Garc´ıa, J. M. Supramol Chem 2010, 22, 325–338.
17 Go´ mez-Valdemoro, A.; San-Jose´, N.; Garcı´a, F. C.; de la Pen˜ a,
J. L.; Serna, F.; Garc´ıa, J. M. Polym Chem 2010, 1, 1291–1301.
18 Tapia, M. J.; Valente, A. J. M.; Burrows, H. D.; Caldero´ n, V.;
Garc´ıa, F.; Garcı´a, J. M. Eur. Polym J 2007, 43, 3838–3848.
19 Go´ mez-Valdemoro, A.; Mart´ınez-Ma´n˜ ez, R.; Sanceno´ n, F.;
Garc´ıa, F. C.; Garc´ıa, J. M. Macromolecules 2010, 43, 7111–7121.
20 San-Jose´, N.; Go´ mez-Valdemoro, A.; Garc´ıa, F.C.; Caldero´ n,
V.; Garc´ıa, J. M. React Func Polym 2008, 68, 1337–1345.
3824
WILEYONLINELIBRARY.COM/JOURNAL/JPOLA