anti-inflammatory agents,13 adenosine receptors,14 P-se-
lectin agonists,15 caspase-3 inhibitors,16 and anti-Alzhei-
mer’s drugs,17 among others.18 Among these compounds,
indenoquinoline derivatives (Figure 1) are the most im-
portant compounds, most notably because of their anti-
proliferative character.7,9,10 Although there have been
many studies on the synthesis of these molecules,7,19 these
methods require multistep syntheses or strict anhydrous
conditions.7,19 Thus, there is a need for the development of
concise and effective methods for building up the target
compound library.
purification of intermediates.21 For these reasons, the
cascade reaction has been used as a tool for building up
the diversity of the compound library.22
As a type of versatile syntheticintermediate, heterocyclic
ketene aminals (HKAs) are widely used for the synthesis
of a variety of heterocyclic and fused heterocyclic
compounds,23,24 including anticancer agents, herbicides,
pesticides, antianxious agents, antileishmanial agents and
antibacterial and antitherapeutic drugs.25
The structure of HKAs can be described as follows
(Scheme 1), with the conjugation of electro-donating amino
groups and the electron-withdrawing carbonyl group, with
a highly polarized double bond (CdC).26 This leads to the
electron density of the R-carbon (C3) being higher than
that of the secondary amino groups (N1 and N5). As a
result, they can serve as bis-nucleophiles (C3 and N1 as
nucleophilic sites) and react with bis-electronphiles to
synthesize the fused heterocyclic compounds.23,24 In addi-
tion to this, they can be reacted with 1,3-dipoles to form
1,2,3-triazoles or isoxazoles.25b,27 However, incorporation
of the two nucleophilic sites N1 and C3 and the electro-
nphile site C4 (CdO) through a one-pot protocol via the
cascade reaction to form polycyclic frame compounds has
not been reported to date (Scheme 1).
Figure 1. Structures of indenoquinolines derivatives and tar-
geted compounds.
Nowadays, the development of concise and effective
one-pot transformations for building up the target com-
pound library is a major change in organic synthesis.20
A
number of strategies have been developed to meet this
challenge. In particular, the cascade reaction has received
much attention because the ability to undertake more than
one synthetic step in the same reaction vessel represents a
useful tool for saving time and energy, as well as for
reducing the use of organic solvents in the isolation and
Scheme 1. Routes Based on the Cascade Reaction of HKAs
through the Three Reaction Sites (N1, C3 and C4) to Give
Polycyclic Compounds
(17) (a) Ronco, C.; Jean, L.; Outtaabout, H.; Renard, P.-Y. Eur. J.
Org. Chem. 2011, 302. (b) Camps, P.; Formosa, X.; Galdeano, C.;
~
ꢀ
´
rez, L.; Gomez, E.; Isambert, N.; Lavilla,
Munoz-Torrero, D.; Ramı
R.; Badia, A.; Clos, M. V.; Bartooini, M.; Mancini, F.; Andrisano, V.;
Arce, M. P.; Rodıguez-Franco, M. I.; Huertas, O.; Dafni, T.; Luque,
´
F. J. J. Med. Chem. 2009, 52, 5365.
(18) Milbank, J. B. J.; Stevenson, R. J.; Ware, D. C.; Chang, J. Y. C.;
Tercel, M.; Ahn, G. O.; Wilson, W. R.; Denny, W. A. J. Med. Chem.
2009, 52, 6822.
To explore the cascade reaction of HKAs through the
three reaction sites (N1, C3 and C4), we designed and
synthesized the target compounds based on the scaffold of
compound 1. We hypothesized that modifying the indeno
ring of 1 by incorporating heteroatoms and the HKA rings
(n = 1, 2, 3) could lead to analogs with improved
(19) (a) Ren, J.-S.; Qu, X.-G.; Dattagupta, N.; Chaires, J. B. J. Am.
Chem. Soc. 2001, 123, 6742. (b) Fush, R. C.; Miller, J. J. J. Am. Chem.
Soc. 1957, 79, 3477. (c) Borsche, W.; Sinn, F. Justus Liebigs Ann. Chem.
1937, 532, 146. (d) Degani, Y.; Willner, I. J. Chem. Soc., Chem. Commun.
1985, 648. (e) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem.
Soc. 2007, 129, 10096. (f) Ryckebusch, A.; Garcin, D.; Lansiaux, A.;
ꢀ
Goossens, J.-F.; Baldeyrou, B.; Houssin, R.; Bailly, C.; Henichart, J.-P.
J. Med. Chem. 2008, 51, 3617.
(20) Wang, F.; Liu, H.-X.; Jiang, Y.-Y.; Zhao, Y.-F. Org. Lett. 2009,
11, 2469.
(21) Kim, J. K.; Kim, Y. H.; Nam, H. T.; Kim, B. T.; Heo, J. N. Org.
Lett. 2008, 10, 3543.
(22) Chouhan, G.; Alper, H. Org. Lett. 2008, 10, 4987.
(23) For reviews, see: (a) Huang, Z.-T.; Wang, M.-X. Heterocycles
1994, 37, 1233. (b) Huang, Z.-T.; Wang, M.-X. Prog. Natural Sci. 1999,
11, 971.
(24) For recent studies, see: (a) Yan, S.-J.; Chen, Y.-L.; Liu, L.; He,
N.-Q.; Lin, J. Green Chem. 2010, 12, 2043. (b) Yan, S.-J.; Huang, C.; Su,
C.-X.; Ni, Y.-F.; Lin, J. J. Comb. Chem. 2010, 12, 91. (c) Yan, S.-J.;
Chen, Y.-L.; Liu, L.; Tang, Y.-J.; Lin, J. Tetrahedron Lett. 2011, 52, 465.
(d) Yan, S.-J.; Niu, Y.-F.; Huang, R.; Lin, J. Synlett. 2009, 17, 2821. (e)
Xu, W.-Y.; Jia, Y.-M.; Yang, J.-K.; Huang, Z.-T.; Yu, C.-Y. Synlett
2010, 11, 1682. (f) Muhammd, Y.; Yu, C.-Y.; Jia, Y.-M.; Huang, Z.-T.
Synlett 2008, 12, 1357. (g) Li, M.; Zhou, Z.-M.; Wen, L.-R.; Qiu, Z.-X.
J. Org. Chem. 2011, 76, 3054. (h) Wen, L.-R.; Liu, C.; Li, M.; Wang, L.-J.
J. Org. Chem. 2010, 75, 7605.
(25) (a) Huang, C.; Yan, S.-J.; Zeng, X.-H.; Dai, X.-Y.; Zhang, Y.;
Qing, C.; Lin, J. Eur. J. Med. Chem. 2011, 46, 1172. (b) Yan, S.-J.; Liu,
Y.-J.; Chen, Y.-L.; Liu, L.; Lin, J. Bioorg. Med. Chem. Lett. 2010, 20,
5225. (c) Yan, S.-J.; Huang, C.; Zeng, X.-H.; Huang, R.; Lin, J. Bioorg.
Med. Chem. Lett. 2010, 20, 48. (d) Tieman, C. H.; Kollmeyer, W. D. US.
Pat. 3,948,934, 1976. (e) Maryanoff, B. E.; Nortey, S. O.; McNally, J. J.;
Sanfilippo, P. J.; McComsey, D. F.; Dubinsky, B.; Shank, R. P.; Reitz, A. B.
Biomed. Chem. Lett. 1999, 9, 1547. (f) Kondo, H.; Taguchi, M.; Inoue,
Y.; Sakamoto, F.; Tsukamoto, G. J. Med. Chem. 1990, 33, 2012. (g)
Suryawanshi, S. N.; Pandey, S.; Rashmirathi; Bhatt, B. A.; Gupta, S.
Eur. J. Med. Chem. 2007, 42, 511. (h) Abdelhalim, M. M.; El-Saidi, M.
M.T.; Rabie, S. T.; Elmegeed, G. A. Steroids 2007, 72, 459.
(26) Baum, K.; Bigelow, S. S.; Nauyen, N. V.; Archibald, T. G.;
Gilardi, R.; Flippen-Anderson, J. L.; Georeg, C. J. Org. Chem. 1992, 57,
235.
(27) (a) Viswanathan, N. I.; Balakrishnan, V. J. Chem. Soc., Perkin
Trans. 1 1979, 2361. (b) Huang, Z.-T.; Wang, M.-X. Synth. Commun.
1991, 21, 1167.
Org. Lett., Vol. 13, No. 18, 2011
4783