7.35–7.38 (m, 2H, Ar–H), 7.48–7.53 (m, 2H, Ar–H), 7.55–
7.66 (m, 2H, Ar–H), 7.78–7.84 (m, 2H, Ar–H), 7.86–7.91 (m,
2H, Ar–H), 7.94–8.00 (m, 2H, Ar–H), 8.15–8.19 (m, 1H, Ar–
H), 8.24–8.30 (m, 1H, Ar–H), 8.50 (s, 1H, Ar–H); 13C NMR
(75 MHz, CDCl3) dC: 124.7, 126.8, 126.9, 127.0, 127.3, 127.7,
127.8, 128.2, 128.6, 129.1, 129.8, 130.7, 131.6, 132.3, 132.6,
133.1, 133.7, 134.1, 134.5, 135.3, 135.9, 150.9, 152.4, 173.9,
179.9, 183.3. HRMS (positive ESI): m/z calcd for C29H15ClO4 +
Na+: 485.05566 (M+), 487.05271 (M + 2)+. Found: 485.05511,
487.05216. Anal. calcd for C29H15ClO4: C, 75.25; H, 3.27%.
Found: C, 75.19; H, 3.33%.
41, 3107. Reformatsky reaction: (d) N. Azizi, L. Torkiyan and M. R.
Saidi, Org. Lett., 2006, 8, 2079. Tsuji–Trost reaction: (e) H. Kinoshita,
H. Shinokubo and K. Oshima, Org. Lett., 2004, 6, 4085. Barbier
reaction: (f) Z. Zha, A. Hui, Y. Zhou, Q. Miao, Z. Wang and H.
Zhang, Org. Lett., 2005, 7, 1903. Aldol reaction: (g) L. Botella and
C. Na´jera, J. Org. Chem., 2005, 70, 4360.
8 For selected recent examples, see: (a) K. Kumaravel and G. Vasuki,
Green Chem., 2009, 11, 1945; (b) N. Ma, B. Jiang, G. Zhang, S.-J. Tu,
W. We v e r a n d G. L i , Green Chem., 2010, 12, 1357; (c) Y. Zhou, Y.
Zhai, J. Li, D. Ye, H. Jiang and H. Liu, Green Chem., 2010, 12, 1397;
(d) Q. Ding, B. Cao, X. Liu, Z. Zong and Y.-Y. Peng, Green Chem.,
2010, 12, 1607; (e) E. J. Jung, B. H. Park and Y. R. Lee, Green Chem.,
2010, 12, 2003.
9 M. F. Sartori, Chem. Rev., 1963, 63, 279.
10 R. H. Thomson, Naturally Occurring Quinones, Chapman and Hall,
New York, 1997.
11 (a) D. G. I. Kingston and M. M. Rao, Planta Med., 1980, 39, 230;
(b) M. M. Rao and D. G. I. Kingston, J. Nat. Prod., 1982, 45,
600.
3-(3-Fluorophenyl)-2-(2-naphthylcarbonyl)-4,9-dihydronaph-
tho[2,3-b]furan-4,9-dione (10o). Yellow solid; Yield: 77%
(MW), 71% (Thermal); m.p. 179–180 ◦C; IR (KBr): 1670, 1661,
1639, 1359, 1267 cm-1;1H NMR (300 MHz, CDCl3) dH: 7.02–
7.08 (m, 1H, Ar–H), 7.30–7.34 (m, 3H, Ar–H), 7.56 (t, 1H,
J = 7.5, Ar–H), 7.64 (t, 1H, J = 7.5, Ar–H), 7.81–8.00 (m, 6H,
Ar–H), 8.18–8.21 (m, 1H, Ar–H), 8.28–8.31 (m, 1H, Ar–H),
8.48 (s, 1H, Ar–H); 13C NMR (75 MHz, CDCl3) dC: 116.4,
117.6, 117.9, 125.1, 126.4, 127.3, 127.7, 128.2, 129.0, 129.5,
129.8, 129.9, 130.2, 130.7, 130.9, 132.9, 133.5, 134.2, 134.5,
134.9, 136.3, 141.4, 152.8, 162.6, 174.3, 180.2, 183.7. HRMS
(positive ESI): m/z calcd for C29H15FO4 + Na+: 469.08521 (M+).
Found: 469.08466. Anal. calcd for C29H15FO4: C, 78.02; H,
3.39%. Found: C, 77.94; H, 3.33%.
12 (a) C. E. Heltzel, A. A. L. Gunatilaka, T. E. Glass and D. G. I.
Kingston, J. Nat. Prod., 1993, 56, 1500; (b) H.-X. Chang, T.-C. Chou,
N. Savaraj, L. F. Liu, C. Yu and C. C. Cheng, J. Med. Chem., 1999,
42, 405; (c) M. Itoigawa, C. Ito, H. T.-W. Tan, M. Okuda, H. Tokuda,
H. Nishino and H. Furukawa, Cancer Lett., 2001, 174, 135; (d) L.
Solorzano, M. S. Rieber, J. D. Medina and M. Rieber, Cancer Biol.
Ther., 2005, 4, 329; (e) J. M. Miguel del Corral, M. A. Castro, A. B.
Oliveira, S. A. Gualberto, C. Cuevas and A. San Feliciano, Bioorg.
Med. Chem., 2006, 14, 7231; (f) M. Ogawa, J. Koyanagi, A. Sugaya,
T. Tsuda, H. Ohguchi, K. Nakayama, K. Yamamoto and A. Tanaka,
Biosci., Biotechnol., Biochem., 2006, 70, 1009; (g) K. O. Eyong, P. S.
Kumar, V. Kuete, G. N. Folefoc, E. A. Nkengfack and S. Baskaran,
Bioorg. Med. Chem. Lett., 2008, 18, 5387.
13 (a) O. A. Binutu, K. E. Adesogan and J. I. Okogun, Planta Med.,
1996, 62, 352. For another example of naphthofuroquinones with
antibacterial activity, see: (b) K. Nagata, K.-I. Hirai, J. Koyama,
Y. Wada and T. Tamura, Antimicrob. Agents Chemother., 1998, 42,
700.
Acknowledgements
SP and JCM thank MICINN, Spain, and the Department
of Science and Technology, New Delhi, for funding for
Indo-Spanish collaborative major research projects (grants
DST/INT/SPAIN/09 and ACI2009-0956). SP and JCM also
gratefully acknowledge DST for funds under IRHPA program
for the purchase of a high resolution NMR spectrometer and
MICINN for grant CTQ2009-12320-BQU, respectively.
14 T. Takegami, E. Simamura, K.-I. Hirai and J. Koyama, Antiviral Res.,
1998, 37, 37.
15 R. Ribeiro-Rodrigues, W. G. dos Santos, A. B. Oliveira, V. Snieckus,
C. L. Zani and A. J. Romanha, Bioorg. Med. Chem. Lett., 1995, 5,
1509.
16 (a) J. Romo and P. Nathan, Tetrahedron, 1964, 20, 2331; (b) J. Correa
and J. Romo, Tetrahedron, 1966, 22, 685.
17 S. C. Hooker, J. Chem. Soc., 1896, 69, 1355.
18 D. V. Davydov and I. P. Beletskaya, Russ. J. Org. Chem., 2004, 40,
143, and references therein.
19 For representative examples, see: (a) K. Kobayashi, T. Uneda, K.
Tanaka, M. Mori, H. Tanaka, O. Morikawa and H. Konishi, Bull.
Chem. Soc. Jpn., 1998, 71, 1691; (b) Y. R. Lee and B. S. Kim, Synth.
Commun., 2003, 33, 4123; (c) K.-L. Wu, S. Wilkinson, N. O. Reich
and T. R. R. Pettus, Org. Lett., 2007, 9, 5537.
20 (a) K. Kobayashi, H. Shimizu, A. Sasaki and H. Suginome, J. Org.
Chem., 1991, 56, 3204; (b) K. Kobayashi, H. Shimizu, A. Sasaki and
H. Suginome, J. Org. Chem., 1993, 58, 4614.
Notes and references
1 For selected reviews of diversity-oriented synthesis, see: (a) M. D.
Burke and S. L. Schreiber, Angew. Chem., Int. Ed., 2004, 43, 46;
(b) D. S. Tan, Nat. Chem. Biol., 2005, 1, 74; (c) R. J. Spandl, A.
Bender and R. D. Spring, Org. Biomol. Chem., 2008, 6, 1149.
2 (a) L. Weber, Curr. Med. Chem., 2002, 9, 2085; (b) C. Hulme and V.
Gore, Curr. Med. Chem., 2003, 10, 51.
21 K. Kobayashi, T. Uneda, M. Kawakita, O. Morikawa and H.
Konishi, Tetrahedron Lett., 1997, 38, 837.
3 V. K. Ahluwalia and R. S. Varma, Green Solvents for Organic
Synthesis, Alpha Science, 2009.
22 T. Shu, D.-W. Chen and M. Ochiai, Tetrahedron Lett., 1996, 37, 5539.
23 (a) M. B. Teimouri and H. R. Khavasi, Tetrahedron, 2007, 63, 10269;
(b) M. B. Teimouri and R. Bazhrang, Monatsh. Chem., 2008, 139,
957.
24 For representative recent examples, see: (a) H. M. Godbole, A. A.
Ranade, A. R. Joseph and M. V. Paradkar, Synth. Commun., 2000,
30, 2951; (b) H. Hagiwara, K. Sato, D. Nishino, T. Hoshi, T. Suzuki
and M. Ando, J. Chem. Soc., Perkin Trans. 1, 2001, 2946; (c) M.
Yamashita, M. Kaneko, H. Tokuda, K. Nishimura, Y. Kumeda and
A. Iida, Bioorg. Med. Chem., 2009, 17, 6286.
25 For general selected reviews and monographs of microwave-assisted
organic synthesis, see: (a) A. Loupy, ed., Microwaves in Or-
ganic Synthesis, Wiley-VCH, 2002; (b) R. S. Varma, Advances in
Green Chemistry: Chemical Synthesis Using Microwave Irradiation,
AstraZeneca Research Foundation India, 2002; (c) J. Tierney
and P. Lindstrom, Microwave Assisted Organic Synthesis, Black-
well, 2004; (d) C. O. Kappe, Angew. Chem., Int. Ed., 2004, 43,
6250.
4 For the first discussion of the concept of “on-water reactions” see:
(a) S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb and
K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44, 3275. For a review,
see: (b) A. Chanda and V. V. Fokin, Chem. Rev., 2009, 109, 725.
5 For a review of stereoselective reactions in water, see: U. M.
Lindstrom, Chem. Rev., 2002, 102, 2751.
6 For monographs, see: (a) P. A. Grieco, ed., Organic Synthesis in
Water, Blackie Academic and Professional, London, 1998; (b) U.
M. Lindstro¨m, Organic Reactions in Water, Blackwell Publishing,
2007. For a review of synthetically relevant reactions of C–H bonds
in water, see: (c) C. I. Herrer´ıas, X. Yao, Z. Li and C. Li, Chem. Rev.,
2007, 107, 2546.
7 For representative examples of the use of water as solvent in common
organic reactions, see: Cycloaddition reactions: (a) R. N. Butler, W.
J. Cunningham and A. G. Coyne, Helv. Chim. Acta, 2005, 88, 1611.
Claisen rearrangement: (b) R. Ballini, L. Barboni and G. Giarlo,
J. Org. Chem., 2003, 68, 9173. Mannich reaction: (c) Y. Mori, K.
Kakumoto, K. Manabe and S. Kobayashi, Tetrahedron Lett., 2000,
2128 | Green Chem., 2011, 13, 2123–2129
This journal is
The Royal Society of Chemistry 2011
©