Journal of the American Chemical Society
ARTICLE
(3) (a) Brammer, L.; Swearingen, J. K.; Bruton, E. A.; Sherwood, P.
Proc. Nat. Acad. Sci., U.S.A. 2002, 99, 4956. (b) Mareque Rivas, J. C.;
Brammer, L. Inorg. Chem. 1998, 37, 4746. (c) Lewis, G. R.; Orpen, A. G.
Chem. Commun. 1998, 1873. (d) Banerjee, R.; Desiraju, G. R.; Mondal,
R.; Howard, J. A. K. Chem.—Eur. J. 2004, 10, 3373. (e) Walsh, R. B.;
Padgett, C. W.; Metrangolo, P.; Resnati, G.; Hanks, T. W.; Pennington,
W. T. Cryst. Growth Des. 2001, 1, 165. (f) Bosch, E.; Barnes, C. L. Cryst.
Growth Des. 2002, 2, 299. (g) Brammer, L.; Mínguez Espallargas, G.;
Adams, H. CrystEngComm 2003, 5, 343. (h) Zordan, F.; Brammer, L.;
Sherwood, P. J. Am. Chem. Soc. 2005, 127, 5979. (i) Mínguez Espallargas,
G.; Brammer, L.; Sherwood, P. Angew. Chem., Int. Ed. 2006, 45, 435.
(j) Rosokha, S. V.; Neretin, I. S.; Rosokha, T. Y.; Hecht, J.; Kochi, J. K.
Heteratom. Chem. 2006, 17, 449. (k) Derossi, S.; Brammer, L.; Hunter,
C. A.; Ward, M. D. Inorg. Chem. 2009, 48, 1666.
(4) Laguna, A.; Lasanta, T.; Lꢀopez-de-Luzuriaga, J. M.; Monge, M.;
Naumov, P.; Olmos, M. E. J. Am. Chem. Soc. 2010, 134, 456.
(5) (a) Corradi, E.; Meille, S. V.; Messina, M. T.; Metrangolo, P.;
Resnati, G. Angew. Chem., Int. Ed. 2000, 39, 1782. (b) Sun, A. W.; Lauher,
J. W.; Goroff, N. S. Science 2006, 312, 5776. (c) Shirman, T.; Arad, T.;
van der Boom, M. E. Angew. Chem., Int. Ed. 2010, 49, 926. (d) Serpell,
C. J.; Kilah, N. L.; Costa, P. J.; Felix, V.; Beer, P. D. Angew. Chem., Int. Ed.
2010, 49, 5322. (e) Kilah, N. L.; Wise, M. D.; Serpell, C. J.; Thompson,
A. L.; White, N. G.; Christensen, K. E.; Beer, P. D. J. Am. Chem. Soc.
2010, 132, 11893.
(6) (a) Nguyen, H. L.; Horton, P. N.; Hursthouse, M. B.; Legon,
A. C.; Bruce, D. W. J. Am. Chem. Soc. 2004, 126, 16. (b) Pr€asang, C.;
Whitwood, A. C.; Bruce, D. W. Chem. Commun. 2008, 2137.
(7) (a) Fourmiguꢀe, M.; Batail, P. Chem. Rev. 2004, 104, 5379. (b)
Imakubo, T.; Sawa, H.; Kato, R. J. Chem. Soc., Chem. Commun.
1995, 1667. (c) Yamamoto, H. M.; Kosaka, Y.; Maeda, R.; Yamaura,
J.; Nakao, A.; Nakamura, T.; Kato, R. ACS Nano 2008, 2, 143.
(8) (a) Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Nat.
Acad. Sci. U.S.A. 2004, 101, 16789. (b) Howard, E.; Sanishvili, R.;
Cachau, R. E.; Mitschler, B.; Bart, P.; Lamour, V.; Van Zandt, M.; Sibley,
E.; Bon, C.; Moras, D.; Schneider, T. R.; Joachimiak, A.; Podjarny, A.
Proteins Struct., Funct., Genet. 2004, 55, 792. (c) Parisini, E.; Metrangolo,
P.; Pilati, T.; Resnati, G.; Terraneo, G. Chem. Soc. Rev. 2011, 40, 2267.
(9) (a) Legon, A. C. Angew. Chem., Int. Ed. 1999, 38, 2686. (b)
Legon, A. C. Phys. Chem. Chem. Phys. 2010, 12, 7736.
J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661. (c) Engle, K. M.;
Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2011, 50, 1478.
(17) (a) Richmond, T. G. Coord. Chem. Rev. 1990, 105, 221. (b)
Yandulov, D. V.; Caulton, K. G.; Belkova, N. V.; Shubina, E. S.; Epstein,
L. M.; Khoroshum, D. V.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc.
1998, 120, 12553. (c) Lee, D.-H.; Kwon, H. J.; Patel, B. P.; Liable-Sands,
L. M.; Rheingold, A. L.; Crabtree, R. H. Organometallics 1999, 18, 1615.
(d) Gutsul, E. I.; Belkova, N. V.; Sverdlov, M. S.; Epstein, L. M.; Shubina,
E. S.; Bakhmutov, V. I.; Gribanova, T. N.; Minyaev, R. M.; Bianchini, C.;
Peruzzini, M.; Zanobini, F. Chem.—Eur. J. 2003, 9, 2219. (e) Belkova, N. V.;
Epstein, L. M.; Shubina, E.S . Acc. Chem. Res. 2005, 38, 624. (f) Brammer, L.
Dalton Trans. 2003, 3145.
(18) Examples of group 4 metal fluorides of the type Cp2MF2 and
Cp*2MF2: (a) Druce, P. M.; Kingston, B. M.; Lappert, M. F.; Spalding,
T. R.; Srivastava, R. C. J. Chem. Soc. (A) 1969, 2106. (b) Herzog, A.; Liu,
F.-Q.; Roesky, H. W.; Demsar, A.; Keller, K.; Noltemeyer, M.; Pauer, F.
Organometallics 1994, 13, 1251. (c) Murphy, E. F.; Yu, P.; Dietrich, S.;
Roesky, H. W.; Parisini, E.; Noltemeyer, M. J. Chem. Soc., Dalton Trans.
1996, 1983.
(19) Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics
1997, 16, 4920.
(20) (a) Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.;
Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H.-G. Organometallics
2004, 23, 6140. (b) Nova, A.; Erhardt, S.; Jasim, N. A.; Perutz, R. N.;
Macgregor, S. A.; McGrady, J. E.; Whitwood, A. C. J. Am. Chem. Soc.
2008, 130, 15499.
(21) Nova, A.; Reinhold, M.; Perutz, R. N.; Macgregor, S. A.;
McGrady, J. E. Organometallics 2010, 29, 1824.
(22) Dransfield, T. A.; Nazir, R.; Perutz, R. N.; Whitwood, A. C.
J. Fluorine Chem. 2010, 131, 1213.
(23) (a) A survey of crystal structures (CSD Conquest 1.12; Nov
2009 + 1 update)23b of square-planar bis(phosphines)nickel and bis-
(phosphines)platinum complexes containing a monodentate O-bonded
ligand show the same trend for MꢀO distances, viz. mean NiꢀO 1.899
Å (40 observations) and mean PtꢀO 2.107 Å (114 observations); Δd =
0.208 Å. (b) Allen, F. H. Acta Crystallogr. 2002, B58, 380.
(24) (a) Su, M.-D.; Chu, S.-Y. J. Am. Chem. Soc. 1997, 119, 10178.
(b) Bosque, R.; Clot, E.; Fantacci, S.; Maseras, F.; Eisenstein, O.; Perutz,
R. N.; Renkema, K. B.; Caulton, K. G. J. Am. Chem. Soc. 1998,
120, 12634. (c) Su, M.-D.; Chu, S.-Y. J. Am. Chem. Soc. 1999,
121, 1045. (d) Gꢀerard, H.; Davidson, E. R.; Eisenstein, O. Mol. Phys.
2002, 100, 533. (e) Gꢀerard, H.; Eisenstein, O. Dalton Trans. 2003, 839.
(f) Reinhold, M.; McGrady, J. E.; Perutz, R. N. J. Am. Chem. Soc. 2004,
126, 5268.
(25) Valerio, G.; Raos, G.; Meille, S. V.; Metrangolo, P.; Resnati, G.
J. Phys. Chem. A 2000, 104, 1617.
(26) For examples of similar methodology for Job plots, see (a)
McCall, A. S.; Wang, H.; Desper, J. M.; Kraft, S. J. Am. Chem. Soc. 2011,
1330, 1832. (b) Yoo, H.; Mirkin, C. A.; DiPasquale, A. G.; Rheingold,
A. L.; Stern, C. L. Inorg. Chem. 2008, 47, 9727.
(10) (a) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol.
Model 2007, 13, 291. (b) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem.
Chem. Phys. 2010, 12, 7748.
(11) (a) Mínguez Espallargas, G.; Zordan, F.; Arroyo Marín, L.; Adams,
H.; Shankland, K.; van de Streek, J.; Brammer, L. Chem.—Eur. J. 2009,
15, 7554. (b) Reddy, L. S.; Chandran, S. K.; George, S.; Babu, N. J.; Nangia,
A. Cryst. Growth Des. 2007, 7, 2675. (c) Aaker€oy, C. B.; Fasulo, M.;
Schulteiss, N.; Desper, J.; Moore, C. J. Am. Chem. Soc. 2007, 129, 13772.
(12) (a) Laurence, C.; Queignec-Cabanatos, M.; Dziembowska, T.;
Queignec, R.; Wojtkowiak, B. J. Am. Chem. Soc. 1981, 103, 2567. (b)
Laurence, C.; Queignec-Cabanatos, M.; Wojtkowiak, B. J. Chem. Soc.,
Perkin Trans. 2 1982, 1605. (c) Laurence, C.; Quegnec-Cabanetos, M.;
Woitowiak, B. Can. J. Chem. 1983, 61, 135.
(13) (a) Cabot, R.; Hunter, C. A. Chem. Commun. 2009, 2005. (b)
Sarwar, M. G.; Dragisic, B.; Salsberg, L. J.; Gouliaras, C.; Taylor, M. S.
J. Am. Chem. Soc. 2010, 134, 1646. (c) Dimitijeviꢀc, E.; Kvak, O.; Taylor,
M. S. Chem. Commun. 2010, 46, 9025. (d) Hauchecorne, D.; van der
Veken, B. J.; Herrebout, W. A.; Hansen, P. E. Chem. Phys. 2011, 38, 5.
(14) Libri, S.; Jasim, N. A.; Perutz, R. N.; Brammer, L. J. Am. Chem.
Soc. 2008, 130, 7842.
(27) (a) Williams, J. H. Acc. Chem. Res. 1993, 26, 593. (b) Reich-
enbaecher, K.; S€uss, H. I.; Hulliger, J. Chem. Soc. Rev. 2005, 34, 22. (c)
Coates, G. W.; Dunn, A. R.; Henling, L. M.; Ziller, J. W.; Lobkovsky,
E. B.; Grubbs, R. H. J. Am. Chem. Soc. 1998, 120, 3641. (d) Vanspey-
brouck, W.; Herrebout, W. A.; van der Veken, B. J.; Lundell, J.; Perutz,
R. N. J. Phys. Chem. B 2003, 107, 13855.
(28) (a) Khandogin, J.; Ziegler, T. Spectrochim. Acta, Part A 1999,
55, 607. (b) Feindel, K. W.; Wasylishen, R. E. Magn. Reson. Chem. 2004,
42, S158.
(15) (a) Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev.
1997, 97, 3425. (b) Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.
(c) Braun, T.; Perutz, R. N. Transition-Metal Mediated CꢀF Bond
Activation. In Comprehensive Organometallic Chemistry III; Crabtree,
R. H., Mingos, D. M. P., Eds.; Elsevier: Amsterdam, 2006; Vol. 1,
Chapter 26. (d) Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, S. A.;
McGrady, J. E.; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333.
(29) We are aware that the Fermi Contact term and the paramag-
netic spinꢀorbit term derive principally from covalent bonding rather
than from electrostatic perturbation. We have considered several
possible scenarios: for instance, the paramagnetic spinꢀorbit term
should be strongly affected by the energy separation between dxy and
dx2ꢀy2 orbitals. This energy gap may be influenced by an electric field
gradient within an electrostatic model, or by a small covalent
component.
(16) (a) Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2009, 128, 7134.
(b) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet,
(30) Bondi, A. J. Phys. Chem. 1964, 68, 441.
14347
dx.doi.org/10.1021/ja203320y |J. Am. Chem. Soc. 2011, 133, 14338–14348