Organometallics
ARTICLE
Figure 5. Molecular structure of [(η3-C3H5)Rh(4)]. Thermal ellipsoids represent 30% probability. Hydrogen atoms are omitted. Selected geometric
data: P1ꢀRh1 = 2.2016(6) Å, P2ꢀRh1 = 2.2039(6) Å, P1ꢀRh1ꢀP2 = 104.49(2)°, C1ꢀRh1 = 2.176(2) Å, C3ꢀRh1 = 2.177(2) Å, C1ꢀC2AꢀC3 =
115.5(3)°.
also proves the capability of the phosphorus ligand of providing a
pocketlike environment for the rhodium center. Such a crowded
ligand arrangement has been discussed to be essential for the
relatively high n:iso product ratio of 46 that is observed in the
propene hydroformylation promoted by (S,R,S)-6,60-(CH3)2-
BIPHEPHOS.27
GmbH) and Dr. B. Hannebauer (AQura GmbH, Evonik In-
dustries) regarding FTIR spectroscopy and DFT quantum
chemical calculations is gratefully acknowledged.
’ DEDICATION
†Dedicated to Professor Rudolf Taube on the occasion of his
80th birthday.
’ CONCLUSION
A benzpinacol substructure was included into a bisphosphite
ligand used in Rh-catalyzed hydroformylation. This motif re-
duces the activity of the catalyst toward the undesired hydro-
formylation of internal olefins. As a consequence, with 1-octene
an outstandingly high l:b aldehyde ratio of 124 is achieved.
Remarkable regioselectivity is also obtained in the consecutive
isomerizationꢀhydroformylation of 2-pentene. Regioselectivity
and activity are significantly influenced by the chain length of the
olefinic substrate. The spectroscopic and theoretical results
obtained for the Rh-4 catalytic system are in accord with previous
experience that, for highly regioselective catalysts, bis-equatorial
diphosphite coordination is typical for the resting state of the
catalyst. Due to the straightforward synthesis of the new ligand, it
has the potential of broad application in academic and industrial
hydroformylation. The first evidence was already given by
Haumann and Wasserscheid, who used the ligand in supported
ionic liquid phase (SILP) catalysis for the highly selective
hydroformylation of mixed C4 feedstocks.28
’ REFERENCES
(1) (a) Rhodium Catalyzed Hydroformylation; van Leeuwen, P. W.
N. M., Claver, C., Eds.; Kluwer: Dordrecht, The Netherlands, 2000.
(b) Protzmann, G.; Wiese, K.-D. Erd€ol, Erdgas, Kohle 2001, 117, 235-
240. (c) Wiese, K.-D., Obst, D. Hydroformylation. In Catalytic Carbo-
nylation Reactions; Beller, M., Ed.; Springer: Heidelberg, Germany, 2008;
Topics in Organometallic Chemistry 18, p 1.
(2) Billig, E.; Abatjoglou, A. G.; Bryant, D. R. US 4668651, 1987 and
US 4769498, 1988 (UCC).
(3) Urata, H.; Itagaki, H.; Takahashi, E.; Wada, Y.; Tanaka, Y.;
Ogino, Y. U.S. Patent 5 910 600, 1997 (Mitsubishi Chem. Corp.).
(4) (a) Cuny, G. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993,
115, 2066. (b) Moasser, B.; Gladfelter, W. L.; Roe, D. C. Organometallics
1995, 14, 3832. (c) van Rooy, A.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M. J. Organomet. Chem. 1997, 201. (d) Rush, S. N.; Noskov, Y. G.; Kron,
T. E.; Korneeva, G. A. Kinet. Catal. 2009, 557.
(5) (a) van Rooy, A.; De Bruijn, J. N. H.; Roobeek, K. F.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M. J. Organomet. Chem. 1996, 507, 69.
(b) van Rooy, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.;
Fraanje, J.; Veldman, N.; Spek, A. L. Organometallics 1996, 15, 835.
(6) (a) Asinger, F.; Berg, O. Chem. Ber. 1955, 88, 445. (b) Keulemans,
A.J. M.;Kwantes, A.; vanBavel, T. Recl. Trav. Chim. Pays-Bas1948, 67, 298.
(7) (a) van Leeuwen, P. W. N. M.; Roobeek, K. F. Brit. Patent
2 068 377, 1980 (Shell). (b) van der Veen, L. A.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 1999, 38, 336. (c) van der Veen,
L. A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Organometallics 1999,
18, 4765. (d) Klein, H.; Jackstell, R.; Wiese, K.-D.; Borgmann, C.; Beller, M.
Angew. Chem., Int. Ed. 2001, 40, 3408. (e) Selent, D.; Wiese, K.-D.; R€ottger,
D.; B€orner, A. Angew. Chem., Int. Ed. 2000, 39, 1639. (f) Seayad, A.; Ahmed,
M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676.
(8) (a) Yan, Y.;Zhang, X.;Zhang, X.J. Am. Chem. Soc. 2006, 128, 16058.
(b) Yu, S.; Chie, Y.; Guan, Z.; Zhang, X. Org. Lett. 2008, 10, 3469.
(9) Selent, D.; Hess, D.; Wiese, K.-D.; R€ottger, D.; Kunze, C.;
B€orner, A. Angew. Chem., Int. Ed. 2001, 40, 1696.
(10) An enhanced olefin isomerization rate due to the reduced σ-
donor character of the O-acyl phosphite moiety is probable. A similar
effect was observed earlier in olefin hydrogenation with catalysts
containing less donating ligands: Schrock, R. R.; Osborn, J. A. J. Am.
Chem. Soc. 1976, 98, 2134.
(11) Selent, D.; Wiese, K.-D.; Bo€rner, A. In Catalysis of Organic
Reactions; Sowa, J. R., Ed.; Taylor & Francis: Boca Raton, FL, 2005; Vol.
20, p 459.
’ ASSOCIATED CONTENT
S
Supporting Information. Text, tables, figures, and CIF
b
files giving experimental procedures, compound characterization
data, crystallographic data for compounds 1 and [(η3-C3H5)Rh-
(4)], details on DFT quantum calculations, and an overlap of the
experimental structure with the quantum chemically calculated
structure of [η3-C3H5Rh(4)]. This material is available free of
’ AUTHOR INFORMATION
Corresponding Authors
*D.S.: tel, ++49-381-1281169; fax, ++49-381-128151169; e-mail,
detlef.selent@catalysis.de. A.B.: email, armin.boerner@catalysis.de.
’ ACKNOWLEDGMENT
We appreciate financial support from Evonik Oxeno GmbH,
Marl, Germany. Support from Dr. D. Hess (Evonik Oxeno
4513
dx.doi.org/10.1021/om2000508 |Organometallics 2011, 30, 4509–4514