1
Figure 4. Aromatic region of the H NMR spectra (500 MHz,
CDCl3, 298 K) of (A) the wheel, (B) axle A1, and (C) [2]rotaxane R1.
in the wheel cavity.12 The largest complexation-induced
shift (Δδ = 1.3 ppm) is found for the amide NH proton c
indicating H-bond formation to the axle. In analogy to
earlier findings,3f,h signal shifts to higher field are observed
for axle protons e, h, and i which experience the anisotropy
of the wheel’s aromatic rings.
1
Figure 5. Aromatic region of the H NMR spectra (500 MHz,
CDCl3, 298 K) of (A) the wheel, (B) axle A2, (C) [2]rotaxane R2,
(D) R2 after adding 1 equiv of nBu4OAc, (E) R2 after adding 1
equiv of nBu4Cl, and (F) the chloride adduct of R2 after adding
NaBPh4 (*: NaBPh4 phenyl groups).
Similar signal shifts are observed for R2 (Figure 5), with
two notable exceptions: (i) The signal for the amide proton
c splits into two with different low-field shifts of Δδ = 1.0
and 1.4 ppm. (ii) The signal for the triazole protons e shifts
to lower field. Since the other signal shifts as well as ESI
MS strongly support rotaxane formation for both, two
different binding motifs are clearly realized in R1 and R2.
R1 is characterized by one set of signals for both axle and
wheel indicating high symmetry. Instead, the signal split-
ting of the amide protons c in R2 agrees with a reduced
symmetry with two wheel NH pairs. Since the axle protons
appear as a single set of signals, both axle halves reside in
equivalent environments. Furthermore, the reversal of the
shift of proton e points to a significant change in the
environment of the triazole proton.
to reside in the proximity of the isophthaloyl diamide
moieties. These observations are consistent with triazoleꢀ
CꢀH OdC hydrogen bonding13 and exclude NꢀH
N
3 3 3
3 3 3
hydrogen bonds between a wheel NH and any of the triazole
N-atoms. This interpretation relies on the assumption that
the wheel can adopt different conformations, among them
an all-in as well as a 2-in-2-out conformation. Indeed, earlier
experimental and theoretical studies14 revealed both con-
formations to be within ca. 5 kJ molꢀ1 in energy with barriers
for the rotation of a whole amide group of ca. 10 kJ molꢀ1
.
The TLM can thus easily adapt its conformation to the
binding requirements of the axles.
1
The H,1H ROESY NMR spectrum of R2 (Figure 6)
exhibits cross peaks between the amide protons c and both
wheel protons b and a in agreement with a wheel con-
formation in which two amide NH groups point inward
and two outward. Inaddition, cross peaks between triazole
proton e and wheel proton b indicate the triazole protons
(12) Hunter, C. A.; Packer, M. J. Chem.;Eur. J. 1999, 5, 1891.
(13) For selected references on triazole CꢀH X hydrogen bond-
3 3 3
ing, see: (a) Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion Receptor
Chemistry; RSC Publishing: Cambridge, U.K., 2006. (b) Li, Y.; Flood, A. H.
J. Am. Chem. Soc. 2008, 130, 12111. (c) Juwarker, H.; Lenhardt, J. M.;
Pham, D. M.; Craig, S. L. Angew. Chem., Int. Ed. 2008, 47, 3740. (d)
Hecht, S.; Meudtner, R. M. Angew. Chem., Int. Ed. 2008, 47, 4926. (e)
Wang, Y.; Li, F.; Han, Y. M.; Wang, F. Y.; Jiang, H. Chem.;Eur. J.
2009, 15, 9424. (f) Juwarker, H.; Lenhardt, J. M.; Castillo, J. C.; Zhao,
E.; Krishnamurthy, S.; Jamiolkowski, R.; Kim, K.-H.; Craig, S. L. J.
Org. Chem. 2009, 74, 8924. (g) Fisher, M. G.; Gale, P. A.; Hiscock, J. R.;
Hursthouse, M. B.; Light, M. E.; Schmidtchen, F. P.; Tong, C. C. Chem.
Commun 2009, 3017. (h) Zheng, H.; Zhou, W.; Lv, J.; Yin, X.; Li, Y.;
Liu, H.; Li, Y. Chem.;Eur. J. 2009, 15, 13253. (i) Romero, T.;
1
Figure 6. Partial H,1H ROESY spectrum (500 MHz, CDCl3,
298 K) of R2. Relevant cross peaks are highlighted in green.
ꢀ
Caballero, A.; Tarraga, A.; Molina, P. Org. Lett. 2009, 11, 3466. (j)
€
Mullen, K. M.; Mercurio, J.; Serpell, C. J.; Beer, P. D. Angew. Chem.,
(14) (a) Schalley, C. A.; Reckien, W.; Peyerimhoff, S.; Baytekin, B.;
€
Int. Ed. 2009, 48, 4781. (k) Gassensmith, J. J.; Matthys, S.; Lee, J.-J.;
Wojcik, A.; Kamat, P. V.; Smith, B. D. Chem.;Eur. J. 2010, 16, 2916.
(l) Lee, S.; Hua, Y.; Park, H.; Flood, A. H. Org. Lett. 2010, 12, 2100. (m)
Vogtle, F. Chem.;Eur. J. 2004, 10, 4777. (b) Kossev, I.; Reckien, W.;
€
Kirchner, B.; Felder, T.; Nieger, M.; Schalley, C. A.; Vogtle, F.;
Sokolowski, M. Adv. Funct. Mater. 2007, 17, 513. (c) Zhu, S. S.; Nieger,
M.; Daniels, J.; Felder, T.; Kossev, I.; Schmidt, T.; Sokolowski, M.;
For a recent review, see: Jurı
´
cek, M.; Kouwer, P. H. J.; Rowan, A. E.
€
Chem. Commun. 2011, 47, 8740.
Vogtle, F.; Schalley, C. A. Chem.;Eur. J. 2009, 15, 5040.
4840
Org. Lett., Vol. 13, No. 18, 2011