Flow microreactor synthesis of 2,2-disubstituted oxetanesꢀ
[18] Yamaguchi H., Nobayashi Y., and Hirao I., A ring opening
ꢀ381
References
[1] Mahal A., Oxetanes as versatile building blocks in the total
synthesis of natural products: An overview, Eur. J. Chem., 2015,
6, 357‐366.
[2] Bull, J. A., Croft, R. A., Davis, O. A., Doran, R., Morgan K. F.
Oxetanes: Recent Advances in Synthesis, Reactivity and
Medicinal Chemistry, Chem. Rev. 2016, 116, 12150-12233.
[3] Wuitschik G., Carreira E. M., Wagner B., Fischer H., Parrilla I.,
Schuler F., Rogers-Evans M., and Muller K., Oxetanes in Drug
Discovery: Structural and Synthetic Insights, J. Med. Chem.,
2010, 53, 3227–3246.
[4] Burkhard J. A., Wuitschik G., Rogers-Evans M., Muller K.,
and Carreira E. M., Oxetanes as Versatile Elements in Drug
Discovery and Synthesis, Angew. Chem., Int. Ed., 2010, 49,
9052–9067.
reaction of oxetanes with lithium acetylides promoted by boron
trifluride etherate, Tetrahedron, 1984, 40, 4261–4266 and
reference there in.
[19] Thurner A., Faigl F., Mordini A., Bigi A., Reginato G., and L.
Töke, A New Base Promoted Rearrangement of (E)-l-Benzyloxy-
2,3-Epoxyalkanes, Tetrahedron, 1998, 54, 11597–11602.
[20] Coppi D. I., Salomone A., Perna F. M., and Capriati V.,
Exploiting the Lithiation-Directing Ability of Oxetane for the
Regioselective Preparation of Functionalized 2-Aryloxetane
Scaffolds under Mild Conditions, Angew. Chem. Int. Ed., 2012,
51, 7532–7536.
[21] Rouquet G., Blakemore D. C., and Ley S. V., Highly
regioselective lithiation of pyridines bearing an oxetane unit by
n-butyllithium, Chem. Commun., 2014, 50, 8908–8911.
[22] Giovine A., Musio B., Degennaro L., Falcicchio A.,
Nagaki A., Yoshida J., and Luisi R., Synthesis of 1,2,3,4-
Tetrahydroisoquinolines by Microreactor-Mediated Thermal
Isomerization of Laterally Lithiated Arylaziridines, Chem.–Eur.
J., 2013, 19, 1872–1876.
[5] Malapit C. A., and Howell A. R., Recent Applications of
Oxetanes in the Synthesis of Heterocyclic Compounds, J. Org.
Chem., 2015, 80, 8489−8495.
[6] Smith D. T., and Njardarson J.T., Ring Expansions of Oxiranes
and Oxetanes, Top. Heterocycl. Chem., 2016, 41, 281–310.
[7] Davis O. A., and Bull J. A., Recent Advances in the Synthesis of
2-Substituted Oxetanes, Synlett, 2015, 26, 1283-1288.
[8] Davis O. A., and Bull J. A., Synthesis of Di-, Tri-, and
Tetrasubstituted Oxetanes by Rhodium-Catalyzed O–H
Insertion and C–C Bond-Forming Cyclization, Angew. Chem. Int.
Ed. 2014, 53, 14230–14234.
[9] Davis O. A., Croft R. A., and Bull J. A., Synthesis of diversely
functionalised 2,2-disubstituted oxetanes: fragment motifs in
new chemical space, Chem. Commun., 2015, 51, 15446–15449.
[10] Morgan K. F., Hollingsworth I. A., and Bull J. A., Studies on the
synthesis, stability and conformation of 2-sulfonyl-oxetane
fragments, Org. Biomol. Chem., 2015, 13, 5265–5272.
[11] Morgan K. F., Doran R., Croft R. A., Hollingsworth I. A., and Bull
J. A., 2-Sulfinyl Oxetanes: Synthesis, Stability and Reactivity,
Synlett, 2016, 27, 106-110.
[23] Carroccia L., Musio B., Degennaro L., Romanazzi G., and Luisi
R., Microreactor-Mediated Organocatalysis: Towards the
Development of Sustainable Domino Reactions, J. Flow Chem.,
2013, 3, 29–33.
[24] Degennaro L., Fanelli F., Giovine A., and Luisi R., External
Trapping of Halomethyllithium Enabled by Flow Microreactors,
Adv. Synth. Catal., 2015, 357, 21–27.
[25] De Angelis S., De Renzo M., Carlucci C., Degennaro L., and Luisi
R., A convenient enantioselective CBS-reduction of arylketones
in flow-microreactor systems, Org. Biomol. Chem., 2016, 14,
4304–4311.
[26] Degennaro L., Maggiulli D., Carlucci C., Fanelli F., Romanazzi
G., and Luisi R., A direct and sustainable synthesis of tertiary
butyl esters enabled by flow microreactors, Chem. Commun.,
2016, 52, 9554-9557.
[27] Degennaro L., Carlucci C., De Angelis S., and Luisi R., Flow
technology for organometallic-mediated synthesis, J. Flow
Chem., 2016, 6, 136–166.
[28] Reschetilowski W. (Ed.), Microreactors in Preparative
Chemistry, Wiley-VCH, Weinheim, Germany, 2013.
[29] Wirth T. (Ed.), Microreactors in Organic Synthesis and Catalysis,
2nd ed., Wiley-VCH, Weinheim, Germany, 2013.
[12] Aftab T., Carter C., Christlieb M., Hart J., and Nelson A.,
Stereospecific conversion of (1R*,3S*)- and (1R*,3R*)-3-
cyclohexyl-1-phenylpropane-1,3-diol into the corresponding
2,4-disubstituted oxetanes, J. Chem. Soc. Perkin Trans. 1,
2000, 711–722.
[13] Jenkinson S. F., and Fleet G. W. J., Oxetanes from the Ring
Contraction of α-Triflates of γ-Lactones: Oxetane Nucleosides
and Oxetane Amino Acids, Chimia, 2011, 65, 71–75.
[14] Abe M., Recent Progress Regarding Regio-, Site-, and
Stereoselective Formation of Oxetanes in Paternò-Buchi
Reactions, J. Chin. Chem. Soc. 2008, 55, 479–486.
[15] D’Auria M., and Racioppi R., Oxetane Synthesis through the
Paternò-Buchi Reaction, Molecules, 2013, 18, 11384-11428.
[16] Coppi D. I., Salomone A., Perna F. M., and Capriati V.,
2-Lithiated-2-phenyloxetane: a new attractive synthon for the
preparation of oxetane derivatives, Chem. Commun., 2011, 47,
9918–9920.
[30] Yoshida J., Basics of Flow Microreactor Synthesis, Springer,
Tokyo, 2015.
[31] Yoshida J., Flash Chemistry: Fast Organic Synthesis in
Microsystems, John Wiley & Sons, Chichester, 2008.
[32] Yoshida J., Takahashi Y. and Nagaki A., Flash Chemistry: Flow
Chemistry That Cannot Be Done in Batch, Chem. Commun.
2013, 49, 9896–9904.
[33] Nagaki A., and Yoshida J., Preparation and Use of
Organolithium and Organomagnesium Species in Flow, Top.
Organomet. Chem., 2016, 57, 137–176.
[34] Nagaki A., and Yoshida J., Microreactor Technology in Lithium
Chemistry, In: Luisi R., Capriati V. (Eds.), Lithium Compounds in
Organic Synthesis: From Fundamentals to Applications, Wiley-
VCH, Weinheim, Germany, 2014.
[17] Schakel M., Vrielink J. J., and Klumpp G. W., Enhanced reactivity
of 3-(methoxymethyl)- and 3-(dimethylaminomethyl)oxetanes
towards alkylllthiums, Tetrahedron Lett., 1987, 28, 5147–5750.
Unauthenticated
Download Date | 1/26/17 11:57 AM