LETTER
Total Synthesis of Alternaramide
799
parameter23 via Parson’s Q-value method24 led to a value
that supported the proposed absolute structure for the mol-
ecule. The molecular conformation is stabilised by tran-
sannular hydrogen bonds.
(9) Styers, T. J.; Kekec, A.; Rodriguez, R.; Brown, J. D.; Cajica,
J.; Pan, P.-S.; Parry, E.; Carroll, C. L.; Medina, I.; Corral, R.;
Lapera, S.; Otrubova, K.; Pan, C.-M.; McGuireb, K. L.;
McAlpinea, S. R. Bioorg. Med. Chem. 2006, 14, 5625.
(10) Vasko, R. C.; Rodriguez, R. A.; Cunningham, C. N.; Ardi,
V. C.; Agard, D. A.; McAlpine, S. R. ACS Med. Chem. Lett.
2010, 1, 4.
(11) Lee, Y.; Silverman, R. B. Org. Lett. 2000, 2, 3743.
(12) Wanga, Y.; Zhang, F.; Zhang, Y.; Liu, J. O.; Ma, D. Bioorg.
Med. Chem. Lett. 2008, 18, 4385.
(13) Cochrane, J. R.; McErlean, C. S. P.; Jolliffe, K. A. Org. Lett.
2010, 12, 3394.
(14) Doi, T.; Iijima, Y.; Shinya, K.; Ganesand, A.; Takahashia, T.
Tetrahedron Lett. 2006, 47, 1177.
(15) Palomo, C.; Oiarbide, M.; Garcia, J. M.; Gonzalez, A.;
Pazos, R.; Odriozola, J. M.; Banuelos, P.; Tello, M.; Linden,
A. J. Org. Chem. 2004, 69, 4126.
(16) Sarabia, F.; Chammaa, S.; López-Herrera, F. J. Tetrahedron
Lett. 2002, 43, 2961.
(17) Gonzalez, I.; Jou, G.; Caba, J. M.; Albericio, F.; Lloyd-
Williams, P.; Giralt, E. J. Chem. Soc., Perkin Trans. 1 1996,
1427.
Figure 2 Crystal structure representation of alternaramide [(–)-1]22
(18) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi,
M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
In conclusion, we have reported the first total synthesis of
alternaramide [(–)-1] using standard solution phase pep-
tide coupling protocols. Two synthetic pathways have
been investigated using a macrolactonization and a mac-
rolactamization approach giving alternaramide in a best
overall yield of 11% in eight steps. Finally, the structure
of synthetic alternaramide [(–)-1] was confirmed by sin-
gle crystal X-ray analysis.
(19) Selected Physical Data for New Compounds:
MeO-L-Pro-D-PheNHBoc [(–)-12]: colourless oil (3.05 g,
87%); Rf (EtOAc–PE, 3:1) 0.65; [a]D19 –5.5 (c = 1, CHCl3).
IR (solution, CHCl3): 3584, 3430, 2978, 1746, 1707, 1645,
1437, 1171 cm–1. 1H NMR (400 MHz, CDCl3): d = 7.24–
7.33 (m, 5 H), 5.55 (d, J = 8.8 Hz, 1 H), 4.69–4.71 (m, 1 H),
4.36 (dd, J = 3.6, 7.6 Hz, 1 H), 3.75 (s, 3 H), 3.60–3.62 (m,
1 H), 3.07–3.09 (m, 1 H), 2.98–3.02 (m, 1 H), 2.74–2.76 (m,
1 H), 1.90–1.98 (m, 4 H), 1.49 (s, 9 H). 13C NMR (100 MHz,
CDCl3): d = 172.21 (C), 170.22 (C), 154.91 (C), 136.42 (C),
129.40 (CH), 128.28 (CH), 126.81 (CH), 79.44 (C), 58.65
(CH), 53.53 (CH), 52.05 (Me), 46.66 (CH2), 40.07 (CH2),
28.85 (CH2), 28.25 (Me), 24.33 (CH2). HRMS: m/z [M +
Na+] calcd for C20H28N2O5: 399.1896; found: 399.1885.
MeO-L-Pro-D-Phe-L-Pro-D-PheNHBoc (–)-7: white foam
Supporting Information for this article is available online at
the 1H NMR and 13C NMR spectra of synthetic alternaramide [(–)-1]
and crystallographic data for (–)-1.
21
(0.97 g, 52% over 2 steps); Rf (EtOAc–PE, 3:1) 0.38; [a]D
–8.1 (c = 1, CHCl3). IR (solution, CHCl3): 3584, 3295, 2980,
1742, 1642, 1497, 1449, 1171 cm–1. 1H NMR (400 MHz,
CDCl3): d = 7.17–7.25 (m, 10 H), 5.51 (d, J = 7.6 Hz, 1 H),
4.86 (dt, J = 6.4, 8.4 Hz, 1 H), 4.54–4.57 (m, 1 H), 4.36 (dd,
J = 2.4, 8.0 Hz, 1 H), 4.27 (dd, J = 4.0, 8.4 Hz, 1 H), 3.68 (s,
3 H), 3.49–3.53 (m, 2 H), 2.93–3.02 (m, 4 H), 2.75–2.77 (m,
1 H), 2.60–2.63 (m, 1 H), 2.46 (s, 1 H), 1.98–2.03 (m, 1 H),
1.78–1.93 (m, 4 H), 1.50–1.61 (m, 3 H), 1.41 (s, 9 H).
13C NMR (100 MHz, CDCl3): d = 172.31 (C), 171.08 (C),
170.43 (C), 169.53 (C), 155.21 (C), 136.62 (C), 129.54
(CH), 129.50 (CH), 129.33 (C), 128.46 (CH), 128.34 (CH),
126.94 (CH), 126.84 (CH), 79.75 (C), 60.16 (CH), 58.80
(CH), 53.92 (Me), 52.42 (CH), 52.22 (CH), 46.84 (CH2),
46.69 (CH2), 39.63 (CH2), 39.00 (CH2), 28.91 (CH2), 28.37
(Me, masked CH2), 24.51 (CH2), 24.18 (CH2). HRMS:
m/z [M + Na+] calcd for C34H44N4O7: 643.3108; found:
643.3098.
Acknowledgment
The authors thank the Department of Chemistry at Loughborough
University for financial support.
References and Notes
(1) (a) Ballard, C. E.; Yu, H.; Wang, B. Curr. Med. Chem. 2002,
9, 471. (b) Li, W.; Schlecker, A.; Ma, D. Chem. Commun.
2010, 46, 5403.
(2) Kim, M.-Y.; Sohn, J. H.; Ahn, J. S.; Oh, H. J. Nat. Prod.
2009, 72, 2065.
(3) Jenkins, K. M.; Renner, M. K.; Jensen, P. R.; Fenical, W.
Tetrahedron Lett. 1998, 39, 2463.
(4) Belofsky, G. N.; Jensen, P. R.; Fenical, W. Tetrahedron Lett.
1999, 40, 2913.
(5) Oh, D.-C.; Jensen, P. R.; Fenical, W. Tetrahedron Lett.
MeO-L-Pro-D-Phe-L-Pro-D-Phe-L-HivOTBS (–)-17:
colourless foam (0.52 g, 71% over 2 steps); Rf (EtAOc) 0.78;
[a]D16 –12.4 (c = 1, CHCl3). IR (solution, CHCl3): 3416,
3290, 2957, 1743, 1658, 1515, 1451, 1254, 1052 cm–1. 1H
NMR (400 MHz, CDCl3): d = 7.13–7.27 (m, 10 H), 7.07 (d,
J = 7.6 Hz, 2 H), 4.82–4.87 (m, 1 H), 4.73–4.77 (m, 1 H),
4.41 (dd, J = 2.4, 8.4 Hz, 1 H), 4.23 (dd, J = 4.0, 7.6 Hz, 1
H), 3.96 (s, 3 H), 2.88–3.01 (m, 4 H), 2.64–2.68 (m, 1 H),
2.52–2.57 (m, 1 H), 2.44–2.48 (m, 1 H), 2.02–2.09 (m, 1 H),
1.95–1.99 (m, 1 H), 1.75–1.88 (m, 5 H), 1.60–1.66 (m, 1 H),
2006, 47, 8625.
(6) Alexander, L. D.; Sellers, R. P.; Davis, M. R.; Ardi, V. C.;
Johnson, V. A.; Vasko, R. C.; McAlpine, S. R. J. Med.
Chem. 2009, 52, 7927.
(7) Carroll, C. L.; Johnston, J. V. C.; Kekec, A.; Brown, J. D.;
Parry, E.; Cajica, J.; Medina, I.; Cook, K. M.; Corral, R.;
Pan, P.-S.; McAlpine, S. R. Org. Lett. 2005, 7, 3481.
(8) Otrubova, K.; Styers, T. J.; Pan, P.-S.; Rodriguez, R.;
McGuire, K. L.; McAlpine, S. R. Chem. Commun. 2006,
1033.
Synlett 2011, No. 6, 797–800 © Thieme Stuttgart · New York