Journal of the American Chemical Society
COMMUNICATION
hMAO-A dependent. No signal was observed around À137.5
ppm after 60 min incubation with hMAO-B or hMAO-A in the
presence of clorgyline (Figure S2). In addition to the hMAO-A
specificity, it should be also noticed that a new NMR peak
appeared in a clear probe-to-product one-to-one conversion
manner without any undesirable side peaks. This is a big benefit
for chemical shift-selective imaging, where sometimes such side
peaks result in nonnegligible background or false-positive con-
trast. The designed probe 1 realized the direct imaging of hMAO-A
activity (Figure 4d). 19F chemical shift-selective imaging (product
19F selective) produced the clear signal for probe 1 only upon
incubation with hMAO-A (Figure 4d, left). The presence of an
hMAO-A inhibitor completely suppressed such signal (Figure 4d,
right). These results show clearly that the designed probe 1 func-
tions as the first signal-switching 19F MRI probe for the specific
detection and imaging of hMAO-A activity.
NEXT Program and Grant-in-Aid No. 22685018 from JSPS,
Japan, and partly by the Innovative Techno-Hub for Integrated
Medical Bio-Imaging Project of the Special Coordination Funds
for Promoting Science and Technology from MEXT, Japan.
’ REFERENCES
(1) For reviews on monoamine oxidase, see, for example: (a)
Berry, M. D.; Juorio, A. V.; Paterson, I. A. Prog. Neurobiol. 1994,
42, 375–391. (b) Youdim, M. B.; Edmondson, D.; Tipton, K. F. Nat.
Rev. Neurosci. 2006, 7, 295–309. (c) Edmondson, D. E.; Binda, C.;
Wang, J.; Upadhyay, A. K.; Mattevi, A. Biochemistry 2009, 48,
4220–4230.
(2) (a) Meyer, J. H.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia,
A.; Young, T; Praschak-Rieder, N.; Wilson, A. A.; Houle, S. Arch. Gen.
Psychiatry 2006, 63, 1209–1216. (b) Robinson, D. S. Primary Psychiatry
2007, 14, 32–34.
In conclusion, we report a strategy for designing hMAO-A-
specific 19F MRI probe. The designed MRI probe has at least two
distinct advantages. The first is specificity. On the basis of the
o/p-substituted phenol hypothesis, our MRI probe achieved
excellent discrimination of hMAO-A from its isoform hMAO-B.
hMAO-A and -B play different physiological roles. In particular,
hMAO-A, the focus of the present work, is considered one
possible enzyme involved in the pathogenesis of psychiatric
disorders.2 In this sense, the specificity shown in this work is
essential for revealing the true physiological and pathological
roles of hMAO-A activity. The second advantage is the applic-
ability to 19F MRI. The rationally designed MRI probe achieved
sufficient 19F chemical shift change upon selective reaction with
hMAO-A. These results allow us to conclude that the designed
“smart” molecule functions as the first chemical shift-switching
19F MRI probe for the specific detection and imaging of hMAO-
A activity. In addition to the high performance of the present
probe itself, the design strategy in this report may provide the
basis for creating new hMAO-A- or -B-specific MRI probes.
Judging from the observation that the related 19F-substituted
phenol-type probes could be used successfully for in vivo 19F
NMR analysis of the reporter protein activity (e.g., 0.012À0.026
mmol of probes in the mouse experiments),9 the present probe
seems to have potential for in vivo applications. However,
practical applications must await further experiments to improve
the probe in terms of the enzymatic turnover rates and pharma-
cokinetic profiles. 19F MR spectroscopy in a much larger voxel
might also be a promising approach to overcome the intrinsic low
sensitivity of the MR probe. In the future, the combination with
PET studies should provide a more precise understanding of
MAO activity.12 Further work is in progress along these lines.
(3) (a) Krajl, M. Biochem. Pharmacol. 1965, 14, 1684–1686. (b)
Zhou, J. J. P.; Zhong, B.; Silverman, R. B. Anal. Biochem. 1996,
234, 9–12. (c) Zhou, M.; Panchuk-Voloshina, N. Anal. Biochem.
1997, 253, 169–174. (d) Chen, G.; Yee, D. J.; Gubernator, N. G.;
Sames, D. J. Am. Chem. Soc. 2005, 127, 4544–4545. (e) Albers, A. E.;
Rawls, K. A.; Chang, C. J. Chem. Commun. 2007, 4647–4649. (f) Aw,
J.; Shao, Q.; Yang, Y.; Jiang, T.; Ang, C.; Xing, B. Chem. Asian J. 2010,
5, 1317–1321.
(4) Zhou, W.; Valley, M. P.; Shultz, J.; Hawkins, E. M.; Bernad, L.;
Good, T.; Good, D.; Riss, T. L.; Klaubert, D. H.; Wood, K. V. J. Am.
Chem. Soc. 2006, 128, 3122–3123.
(5) (a) Tabor, C. W.; Tabor, H.; Rosenthal, S. M. J. Biol. Chem. 1954,
208, 645–661. (b) Weissbach, H.; Smith, T. E.; Daly, J. W.; Witkop, B.;
Udenfriend, S. J. Biol. Chem. 1960, 235, 1160–1163. (c) Houslay, M. D.;
Tipton, K. F. Biochem. J. 1974, 139, 645–652. (d) Flaherty, P.;
Castagnoli, K.; Wang, Y.-X.; Castagnoli, N., Jr. J. Med. Chem. 1996,
39, 4756–4761. (e) Bissel, P.; Bigley, M. C.; Castagnoli, K.; Castagnoli,
N., Jr. Bioorg. Med. Chem. 2002, 10, 3031–3041.
(6) (a) Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009,
130, 132–143. (b) Yu, J.-X.; Kodibagkar, V. D.; Cui, W.; Mason, R. P.
Curr. Med. Chem. 2005, 12, 819–848.
(7) (a) Costa, J. L.; Dobson, C. M.; Fay, D. D.; Kirk, K. L.; Poulsen,
F. M.; Valeri, C. R.; Vecchione, J. J. FEBS Lett. 1981, 136, 325–328.
(b) Diffley, D. M.; Costa, J. L.; Sokoloski, E. A.; Chiueh, C. C.; Kirk,
K. L.; Creveling, C. R. Biochem. Biophys. Res. Commun. 1983, 110,
740–745.
(8) For recent examples of 19F NMR probes for enzymatic
analyses, see: (a) Mizukami, S.; Takikawa, R.; Sugihara, F.; Hori,
Y.; Tochio, H.; W€alchli, M.; Shirakawa, M.; Kikuchi, K. J. Am. Chem.
Soc. 2008, 130, 794–795. (b) Stockman, B. J. J. Am. Chem. Soc. 2008,
130, 5870–5871. (c) Tanabe, K.; Harada, H.; Narazaki, M.; Tanaka,
K.; Inafuku, K.; Komatsu, H.; Ito, T.; Yamada, H.; Chujyo, Y.;
Matsuda, T.; Hiraoka, M.; Nishimoto, S. J. Am. Chem. Soc. 2009,
131, 15982–15983. (d) Takaoka, Y.; Sakamoto, T.; Tsukiji, S.;
Narazaki, M.; Matsuda, T.; Tochio, H.; Shirakawa, M.; Hamachi, I.
Nat. Chem. 2009, 1, 557–561.
’ ASSOCIATED CONTENT
(9) (a) Cui, W.; Otten, P.; Li, Y.; Koeneman, K. S.; Yu, J.; Mason,
R. P. Magn. Reson. Med. 2004, 51, 616–620. (b) Yu, J.; Mason, R. P.
J. Med. Chem. 2006, 49, 1991–1999. (c) Liu, L.; Kodibagkar, V. D.; Yu,
J.-X.; Mason, R. P. FASEB J. 2007, 21, 2014–2019. (d) Yu, J.-X.;
Kodibagkar, V. D.; Liu, L.; Mason, R. P. NMR Biomed. 2008,
21, 704–712.
S
Supporting Information. Methods and Figures S1 and
b
S2. This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
(10) Colibus, L. D.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D. E.;
Mattevi, A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 12684–12689.
(11) Faint artifacts were observed in Figure 4b because of the
excessive brightness of the samples.
Corresponding Author
(12) Arnett, C. D.; Fowler, J. S.; MacGregor, R. R.; Schlyer, D. J.;
Wolf, A. P.; L^angst€orn, B.; Halldin, C. J. Neurochem. 1987, 2,
522–527.
’ ACKNOWLEDGMENT
We thank Prof. Masahiro Shirakawa of Kyoto University for
support on NMR measurements. This work was supported by
14211
dx.doi.org/10.1021/ja2057506 |J. Am. Chem. Soc. 2011, 133, 14208–14211