Please do not adjust margins
Catalysis Science & Technology
Page 4 of 6
DOI: 10.1039/C8CY00681D
COMMUNICATION
Journal Name
(b) D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M.
protecting group onto 2-hexyn-1-ol, the rate of conversion of
the resulting alkyne was significantly decreased compared to
the deprotected alcohol (entry 8). Amine and halide groups are
not compatible with the iron catalyst and lead to poor
conversions after 24 h and no detectable quantities of olefin
product (entries 9,10).
Hävecker, A. Knop-Gericke, S. D. Jackson and R. Schlögl,
Science, 2008, 320, 86-89. (c) T. Yusuke, H. Norifumi, H.
Takayoshi, S. Shogo, M. Takato, M. Tomoo, J. Koichiro and K.
Kiyotomi, Chem. Lett., 2011, 40, 405-407; (d) M. W. Tew, H.
Emerich and J. A. van Bokhoven, J. Phys. Chem. C, 2011, 115
8457-8465; (e) C. W. A. Chan, A. H. Mahadi, M. M.-J. Li, E. C.
Corbos, C. Tang, G. Jones, W. C. H. Kuo, J. Cookson, C. M.
Brown, P. T. Bishop and S. C. E. Tsang, Nat. Commun., 2014,
,
Z-selectivity of the iron NHC catalyst is very high for phenyl
substituted internal acetylenes with >95% cis-olefin formation
(entries 1-3), and exclusive formation of the Z-isomer in the
reduction of 1-phenyl-1-hexyne. The selectivity is lower for the
benzylether-containing substrate (entry 8) with a 4:1 bias
towards the cis-olefin. The initial selectivity was higher (7:1
after 4 h and at 59% conversion), suggesting a gradual drift in
catalyst conformation that may be product-induced, and
concomitant loss of selectivity. In contrast, the same substrate
with a free hydroxyl group affords the cis-product in excellent
Z/E ratio (98:2, entry 6) and the isomeric 3-hexyn-1-ol is
reduced exclusively to the cis-alkene.20
5
, 5787.
4
5
For homogeneous systems see: (a) B. M. Trost and R.
Braslau, Tetrahedron Lett., 1989, 30, 4657-4660; (b) M. W.
van Laren and C. J. Elsevier, Angew. Chem. Int. Ed., 1999, 38
3715-3717; (c) D. Evrard, K. Groison, Y. Mugnier and P. D.
Harvey, Inorg. Chem., 2004, 43, 790-796; (d) P. Hauwert, R.
Boerleider, S. Warsink, J. J. Weigand and C. J. Elsevier, J. Am.
Chem. Soc., 2010, 132, 16900-16910.
(a) R. Kusy and K. Grela, Org. Lett., 2016, 18, 6196-6199; (b)
K.-N. T. Tseng, J. W. Kampf and N. K. Szymczak, J. Am. Chem.
Soc., 2016, 138, 10378-10381; (c) K. T. Neumann, S. Klimczyk,
M. N. Burhardt, B. Bang-Andersen, T. Skrydstrup and A. T.
,
Lindhardt, ACS Catal., 2016, 6, 4710-4714; (d) K. Radkowski,
In summary, we have employed 1,2,3-triazolylidene and
IMes iron piano-stool complexes for the catalytic semi-
hydrogenation of alkynes using silanes as reducing agents.
Monodentate complexes are more active than the NHC-
pyridine chelate. In contrast to catalytic hydrogenation using
platinum group transitions metals, the reduction is selective to
alkynes, and alkenes are typically not converted, thus
preventing any over-reduction to saturated alkanes. This
distinct reactivity demonstrates the complementarity of iron
as a catalyst compared to precious metals. The reduction of
internal alkynes revealed excellent Z-selectivity using this
protocol, offering an attractive and cheap methodology to
access this synthetically valuable functional group. Further
work is on-going to reduce the catalyst loading and to
efficiently convert aliphatic alkynes by enhancing the reactivity
of the iron centre through appropriate ligand tuning.
B. Sundararaju and A. Fürstner, Angew. Chem. Int. Ed., 2013,
52, 355-360; (e) C. Belger, N. M. Neisius and B. Plietker,
Chem. Eur. J., 2010, 16, 12214-12220.
6
7
(a) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1976,
98, 2143-2147; (b) M. A. Esteruelas, I. González, J. Herrero
and L. A. Oro, J. Organomet. Chem., 1998, 551, 49-53.
(a) K. Higashida and K. Mashima, Chem. Lett., 2016, 45, 866-
868; (b) M. A. Esteruelas, A. M. Lopez, L. A. Oro, A. Perez, M.
Schulz and H. Werner, Organometallics, 1993, 12, 1823-
1830; (c) A. Azua, J. A. Mata and E. Peris, Organometallics,
2011, 30, 5532-5536; (d) G. Marinelli, I. E. I. Rachidi, W. E.
Streib, O. Eisenstein and K. G. Caulton, J. Am. Chem. Soc.,
1989, 111, 2346-2347; (e) K. Tani, A. Iseki and T. Yamagata,
Chem. Commun., 1999, 1821-1822.
S. Fu, N.-Y. Chen, X. Liu, Z. Shao, S.-P. Luo and Q. Liu, J. Am.
Chem. Soc., 2016, 138, 8588-8594.
(a) E. Richmond and J. Moran, J. Org. Chem., 2015, 80, 6922-
6929; (b) T. Chen, J. Xiao, Y. Zhou, S. Yin and L.-B. Han, J.
Organomet. Chem., 2014, 749, 51-54.
8
9
We thank the European Research Council (ERC CoG 615653),
the Swiss National Science Foundation (200021_162868 and
206021_170755), and the Irish Research Council (fellowship to
C.J.) for financial support.
10 (a) K. Semba, T. Fujihara, T. Xu, J. Terao and Y. Tsuji, Adv.
Synth. Catal., 2012, 354, 1542-1550; (b) A. M. Whittaker and
G. Lalic, Org. Lett., 2013, 15, 1112-1115.
11 (a) S. C. Bart, E. Lobkovsky and P. J. Chirik, J. Am. Chem. Soc.,
2004, 126, 13794-13807; (b) D. Srimani, Y. Diskin-Posner, Y.
Ben-David and D. Milstein, Angew. Chem. Int. Ed., 2013, 52
14131-14134; (c) P.-H. Phua, L. Lefort, J. A. F. Boogers, M.
Tristany and J. G. de Vries, Chem. Commun., 2009, 3747-
3749; (d) M. Takeuchi and K. Kano, Organometallics, 1993,
12, 2059-2064.
,
Conflicts of interest
There are no conflicts to declare.
12 (a) C. Belger and B. Plietker, Chem. Commun., 2012, 48,
5419-5421; (b) M. Haberberger, E. Irran and S. Enthaler, Eur.
J. Inorg. Chem., 2011, 2797-2802; (c) S. Enthaler, M.
Haberberger and E. Irran, Chem. Asian J., 2011, 6, 1613-
Notes and references
‡ Upon extended reaction times (>10 h), the spectroscopic yields
tend to decrease slowly, which has been attributed to the
inherent instability of the styrene products towards
polymerization in the absence of a stabilizer (see also ESI, Table
S1).
1623.
13 G. Wienhofer, F. A. Westerhaus, R. V. Jagadeesh, K. Junge, H.
Junge and M. Beller, Chem. Commun., 2012, 48, 4827-4829.
14 C. Johnson and M. Albrecht, Organometallics, 2017, 36
2902-2913.
,
1
(a) J. Scheirs and D. B. Priddy, Modern Styrenic Polymers:
Polystyrenes and Styrenic Copolymers, John Wiley,
Chichester, 2003; (b) K. Kawai and T. Fujita, Top. Organomet.
Chem., 2009, 26, 3-46.
15 Pioneering work: (a) V. V. K. M. Kandepi, J. M. S. Cardoso, E.
Peris and B. Royo, Organometallics, 2010, 29, 2777-2782; (b)
F. Jiang, D. Bézier, J.-B. Sortais and C. Darcel, Adv. Synth.
Catal., 2011, 353, 239-244; (c) D. Bézier, G.T. Venkanna, J.-B.
2
3
(a) M. Schuster and S. Blechert, Angew. Chem. Int. Ed., 1997,
36, 2036-2056; (b) J. C. Mol, J. Mol. Catal. A: Chem., 2004,
213, 39-45.
(a) H. Lindlar, Helv. Chim. Acta, 1952, 35, 446-450; (b) J. J.
Brunet and P. Caubere, J. Org. Chem., 1984, 49, 4058-4060;
Sortais and C. Darcel, ChemCatChem, 2011,
J. M. S. Cardoso and B. Royo, Chem. Commun., 2012, 48
3, 1747-1750; (d)
,
4944-4946; for a review, see: (e) C. Johnson and M. Albrecht,
Coord. Chem., Rev. 2017, 352, 1-14.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins