Organic Letters
Letter
(4) (a) Geyer, H. M., III; Martin, L. L.; Crichlow, C. A.; Dekow, F.
W.; Ellis, D. B.; Kruse, H.; Setescak, L. L.; Worm, M. J. Med. Chem.
1982, 25, 340−346. (b) Martin, L. L.; Setescak, L. L.; Worm, M.;
Crichlow, C. A.; Geyer, H. M., III; Wilker, J. C. J. Med. Chem. 1982,
25, 346−351. (c) Albright, J. D.; Reich, M. F.; Delos Santos, E. G.;
Dusza, J. P.; Sum, F.-W.; Venkatesan, A. M.; Coupet, J.; Chan, P. S.;
Ru, X.; Mazandarani, H.; Bailey, T. J. Med. Chem. 1998, 41, 2442−
2444. (d) Zhu, Z.; Sun, Z.-Y.; Ye, Y.; McKittrick, B.; Greenlee, W.;
Czarniecki, M.; Fawzi, A.; Zhang, H.; Lachowicz, J. E. Bioorg. Med.
Chem. Lett. 2009, 19, 5218−5221. (e) McMullan, M.; Garcia-Bea, A.;
Miranda-Azpiazu, P.; Callado, L. F.; Rozas, I. Eur. J. Med. Chem. 2016,
123, 48−57.
explanation and complete computational details.
(18) (a) For the free energy profile including the formation of the
eight-membered rhodacycles I from guanidines 1b and 1c with alkyne
through a CMD process and formation of seven-membered
rhodacycles, see: Algarra, A. G.; Cross, W. B.; Davies, D. L.;
Khamker, Q.; Macgregor, S. A.; McMullin, C. L.; Singh, K. J. Org.
Chem. 2014, 79, 1954−1970. (c) Carr, K. J. T.; Davies, D. L.;
Macgregor, S. A.; Singh, K.; Villa-Marcos, B. Chem. Sci. 2014, 5,
2340−2346. (d) Davies, D. L.; Ellul, C. E.; Macgregor, S. A.;
McMullin, C. L.; Singh, K. J. Am. Chem. Soc. 2015, 137, 9659−9669.
direct reductive elimination from I.
(5) (a) For standard synthetic routes to 1,3-benzodiazepine cores,
see: Fukamachi, S.; Kobayashi, A.; Konishi, H.; Kobayashi, K.
Synthesis 2010, 2010, 288−292. (b) Dengiz, C.; Ozcan, S.; Sahin, E.;
Balci, M. Synthesis 2010, 2010, 1365−1370. (c) Rotas, G.; Kimbaris,
A.; Varvounis, G. Tetrahedron 2011, 67, 7805−7810. (d) Yan, L.;
Che, X.; Bai, X.; Pei, Y. Mol. Diversity 2012, 16, 489−501.
(20) For the sake of clarity, only key intermediates and transition
states are shown in Figure 3 and discussed in the main text. See the
formation of quinazolines 4ba and 4ca from rhodacycles I.
̇
́
́
(21) (a) Stępien, M.; Gonka, E.; Zyła, M.; Sprutta, N. Chem. Rev.
2017, 117, 3479−3716. (b) Narita, A.; Wang, X.-Y.; Feng, X.;
Muellen, K. Chem. Soc. Rev. 2015, 44, 6616−6643. (c) Wang, X.; Sun,
G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Chem. Soc. Rev. 2014,
43, 7067−7098.
(6) (a) For recent reviews, see: Gensch, T.; Hopkinson, M. N.;
Glorius, F.; Wencel-Delord. Chem. Soc. Rev. 2016, 45, 2900−2936.
(b) Zheng, Q.-Z.; Jiao, N. Chem. Soc. Rev. 2016, 45, 4590−4627.
(c) Gulías, M.; Mascarenas, J. L. Angew. Chem., Int. Ed. 2016, 55,
̃
11000−11019. (d) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-
Q. Chem. Rev. 2017, 117, 8754−8786. (e) Yi, H.; Zhang, G.; Wang,
H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117,
9016−9085.
(22) Dyatkin, A. B.; Tsai, J.-Y.; Ma, B. Organic electroluminescent
materials and devices. US20180315935A1, 2018.
(7) (a) Wang, L.; Huang, J.; Peng, S.; Liu, H.; Jiang, X.; Wang, J.
Angew. Chem., Int. Ed. 2013, 52, 1768−1772. (b) Zuo, Z.; Liu, J.; Nan,
J.; Fan, L.; Sun, W.; Wang, Y.; Luan, X. Angew. Chem., Int. Ed. 2015,
54, 15385−15389. (c) For a related formation of benzoxepines, see:
Seoane, A.; Casanova, N.; Quin
J. Am. Chem. Soc. 2014, 136, 834−837.
ones, N.; Mascarenas, J. L.; Gulías, M.
̃ ̃
́
́
́
(8) Cajaraville, A.; Suarez, J.; Lopez, S.; Varela, J. A.; Saa, C. Chem.
Commun. 2015, 51, 15157−15160.
(9) (a) For Pd-catalyzed [5 + 2] oxidative annulations with allenes
to 1-benzazepines, see: Cendon, B.; Casanova, N.; Comanescu, C.;
Garcia-Fandino, R.; Seoane, A.; Gulias, M.; Mascarenas, J. L. Org. Lett.
2017, 19, 1674−1677. (b) Wu, L.; Meng, Y.; Ferguson, J.; Wang, L.;
Zeng, F. J. Org. Chem. 2017, 82, 4121−4128.
(10) (a) For Rh-catalyzed C−H activations of benzimidazoles, see:
Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed.
́
́
2008, 47, 4019−4022. (b) Villar, J. M.; Suarez, J.; Varela, J. A.; Saa, C.
Org. Lett. 2017, 19, 1702−1705.
(11) Zhang, G.; Yang, L.; Wang, Y.; Xie, Y.; Huang, H. J. Am. Chem.
Soc. 2013, 135, 8850−8853.
(12) Typically, early oxidative conditions employed AgOAc as
oxidant (conditions A) that were sometimes replaced with O2 as the
sole oxidant (conditions B).
(13) The size of the heterocyclic amine unit proved to be an
essential characteristic of the substrate since six-membered 2-
(tetrahydroquinolin-1-yl) and seven-membered 2-(tetrahydrobenza-
zepin-1-yl)-1,3-benzimidazoles 1g and 1h failed to give the desired
1,3-benzodiazepine derivatives. We speculate that the increased
conformational mobility in the azaheterocyclic unit (less planar
substrate) hampers an effective C−H activation step.
(14) [5 + 1] cycloadduct 4ia (18%) was also observed when
conditions A were used.
(15) (a) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474−16475. (b) Zhang,
G.; Yu, H.; Qin, G.; Huang, H. Chem. Commun. 2014, 50, 4331−
4334.
(16) For a tandem Rh-catalyzed [3 + 2]/[5 + 2] annulation to
indeno[1,7-cd]azepines, see: Yang, Y.; Zhou, M.-B.; Ouyang, X.-H.;
Pi, R.; Song, R.-J.; Li, J.-H. Angew. Chem., Int. Ed. 2015, 54, 6595−
6599.
(17) These calculations were performed using AgOAc as oxidant to
visualize the different selectivity found for guanidines 1b ([5 + 1]
cycloadducts) and 1c ([5 + 2] cycloadducts). In fact, when O2 is used
as oxidant, only guanidine 1c reacts to afford [5 + 2] cycloadduct
E
Org. Lett. XXXX, XXX, XXX−XXX