756
K. Zyabrev et al. / Dyes and Pigments 92 (2011) 749e757
3
ꢀ
ꢀ
ꢀ
[4] Zyabrev K, Doroshenko A, Mikitenko E, Slominskii Y, Tolmachev A. Design,
synthesis, and spectral luminescent properties of a novel polycarbocyanine
series based on the 2,2-difluoro-1,3,2-dioxaborine nucleus. Eur J Org Chem
2008;9:1550e8.
[5] Halik M, Hartmann H. Synthesis and characterization of new long-
wavelength-absorbing oxonol dyes from the 2,2-difluoro-1,3,2-dioxaborine
type. Chem Eur J 1999;5:2511e7.
[6] Gerasov AO, Shandura MP, Kovtun YP. Series of polymethine dyes derived
from 2,2-difluoro-1,3,2-(2H)-dioxaborine of 3-acetyl-7-diethylamino-4-
hydroxycoumarin. Dyes Pigm 2008;77:598e607.
[7] Traven VF, Chibisova TA, Manaev AV. Polymethine dyes derived from boron
complexes of acetylhydroxycoumarins. Dyes Pigm 2003;58:41e6.
[8] (a) Tyutyulkov N, Fabian J, Mehlhorn A, Dietz F, Tadjer A. Polymethene dyes.
Structure and properties. Sofia: St. Kliment Ohridski Univ Press; 1991;
(b) Griffiths J. Colour and constitution of organic molecules. Academic Press;
1976;
b ¼ 16.562(2), c ¼ 14.445(1) A,
b
¼ 107.679(4) , V ¼ 2196.4(4) A ,
Z ¼ 4, calculated density: 1.250 g cmꢁ3
,
m
(MoK
a
) ¼ 0.092 mmꢁ1
,
F(000) ¼ 872.
Crystals of 12: C29H31B1F2N2O2; M ¼ 488.38; system: mono-
clinic, space group Cc (N9); unit-cell dimensions: a ¼ 16.034(4),
3
ꢀ
ꢀ
b ¼ 15.491(5), c ¼ 10.250(3) A,
b
¼ 94.43(1)ꢀ, V ¼ 2538.1(1)A ,
Z ¼
4
4, calculated density: 1.278 g cmꢁ3
,
m
(MoK
a
) ¼ 0.089 mmꢁ1
,
F(000) ¼ 1032.
The intensities of 24,817 (2) and 5836 (12) reflections were
measured at room temperature on a Bruker Smart Apex II
diffractometer operating in the
u and scans mode. 4500 (2) and
3336 (12) unique reflections [Rint ¼ 0.066 (2), 0.073 (12)] were
used in further refinement. Data were corrected for Lorentz and
polarization effects. The structure was solved by direct methods
and refined by the full-matrix least-squares technique in the
anisotropic approximation for non-hydrogen atoms using the
SHELXS97 and SHELXL97 programs [24], and CRYSTALS program
package [25]. Hydrogen atoms were located in the difference
Fourier maps and refined with fixed positional and thermal
parameters. The Chebyshev weighting scheme was used. The
SADABS [26] absorption correction was applied. For 2, the
refinement converged to Rw ¼ 0.035, R1 ¼0.038, GOF ¼ 1.135 for
(c) Fabian J, Hartmann H. Light absorption of organic colorants. Springer-
Verlag; 1980.
[9] (a) Xia M, Wu B, Xiang G. Synthesis, structure and spectral study of two types
of novel fluorescent BF2 complexes with heterocyclic 1,3-enaminoketone
ligands. J Fluor Chem 2008;129:402e8;
(b) Zhou Y, Xiao Y, Chi S, Qian X. Isomeric boronꢁfluorine complexes with
donorꢁacceptor architecture: strong solid/liquid fluorescence and large
stokes shift. Organic Lett 2008;10:633e6.
[10] Zyabrev KV, Ilchenko AY, Slominskii YL, Tolmachev AI. Polymethine dyes
based on 2,2-difluoro-1,3,2-dioxaborine complex, synthesized from
2-acetyldimedone. Ukr Khim Zh 2006;72:56e63.
[11] Vasil’ev LS, Azarevich OG, Bogdanov VS, Bochkareva MN, Dorokhov VA. Boron
chelates with 5,5,5-trifluoro- and 5,5,5-trichloro-4-aminopent-3-en-2-ones.
Russ Chem Bull 1992;41:2104e7.
[12] Tolmachev AI, Derevyanko NA, Karaban EF, Kudinova MA, Pyrylocyanines VI.
Conversion of 4-pyrylocyanines to 4-pyridocyanines. Chem Heterocycl Compd
1975;11:534e8.
[13] VanAllen JA, Reynolds GA. The reactions of 2,2-difluoro-4-methylnaphtho[l,2-
e]-1,3,2-dioxaborine and its [2,1-e] isomer with carbonyl compounds and
with aniline. J Heterocycl Chem 1969;6:29e35.
[14] Bach G, Daehne S. RODD’S chemistry of carbon compounds. 2nd suppl. to 2nd
ed., vol IVB. Amsterdam: Elsevier Science; 1997. Chap 15, Het. Comp., p. 383.
[15] (a) Kulinich AV, Derevyanko NA, Ishchenko AA. Synthesis, structure, and
solvatochromism of merocyanine dyes based on barbituric acid. Russ J Gen
Chem 2006;76:1441e57;
observed 1276 reflections with I > 3
Rw ¼ 0.061, R1 ¼0.060, GOF ¼ 0.687 for observed 1781 reflections
with I > 2.5
s
(I) (obsd./var. ¼ 4.7); for 12, to
s
(I) (obsd./var. ¼ 5.44). CCDC reference number is
777793 for 2 and 777794 for 12.
Atomic coordinates, bond lengths, bond angles, and thermal
parameters have been deposited at the Cambridge Crystallographic
Data Centre (CCDC). These data can be obtained free of charge via
Union Road, Cambridge CB2 1EZ, UK; fax: þ44 1223 336 033; or
quote the full literature citation and CCDC reference numbers.
(b) Kulinich AV, Derevyanko NA, Ishchenko AA. Electronic structure and sol-
vatochromism of merocyanines based on N, N-diethylthiobarbituric acid.
J Photochem Photobiol A 2007;188:207e17;
(c) Kulinich AV, Ishchenko AA, Groth UM. Electronic structure and sol-
vatochromism of merocyanines NMR spectroscopic point of view. Spec-
trochim Acta Part A 2007;68:6e14.
Acknowledgements
[16] Ishchenko AA. Structure and spectral luminescent properties of polymethine
dyes. Kiev: Naukova Dumka; 1994.
The authors are grateful to Prof. A.A. Ishchenko and Prof. A.D.
Kachkovskii for helpful discussions. The authors thank Prof. S.N.
Yarmoluk and Dr. M.Yu. Losytskii for help in carrying out fluores-
cence measurements.
[17] (a) Przhonskaya OV, Tikhonov EA. Structure of polymethine dyes’ molecules
and their lasing properties. Opt Spektrosk 1978;44:480e5;
(b) Pozharskii AF, Chegolya TN, Simonov AM. The nature of the interaction of
the phenyl and imidazole rings in the N-arylimidazoles. Chem Heterocycl
Compd 1968;4:373e4;
(c) Lifshits EB, Shagalova DY, Yagupolskii LM. About properties and structure
of 1,10-3,30-tetraethyl- and 1,10-diphenyl-3,30 diethylimidacarbocyanines
substituted into the heterocyclic residue. J Sci Appl Photog Cinematogr 1979;
24:140e2;
References
(d) Knyazhanskii MI, Tymyanskii YR, Feigelman VM, Katritsky AR. Pyridinium
salts: luminescent spectroscopy and photochemistry. Heterocycles 1987;26:
2963e82.
[1] (a) Hales JW, Zheng S, Barlow S, Marder SR, Perry JW. Bisdioxaborine poly-
methines with large third-order nonlinearities for all-optical signal process-
ing. J Am Chem Soc 2006;128:11362e3;
[18] (a) Ishchenko AA, Kulinich AV, Bondarev SL, Knyukshto VN. Photodynamics of
polyene-polymethine transformations and spectral fluorescent properties of
merocyanine dyes. J Phys Chem A 2007;111:13629e37;
(b) HCh Lin, Kim HG, Barlow S, Hales JM, Perry JW, Marder SR. Synthesis and
linear and nonlinear optical properties of metal-terminated bis(dioxaborine)
polymethines. Chem Commun 2011;47:782e4.
(b) Kulinich AV, Derevyanko NA, Ishchenko AA, Bondarev SL, Knyukshto VN.
Structure and fluorescent properties of merocyanines based on N, N-dieth-
ylthiobarbituric acid. J Photochem Photobiol A 2008;197:40e9;
(c) Kulinich AV, Derevyanko NA, Ishchenko AA, Bondarev SL, Knyukshto VN.
Structure and fluorescent properties of indole cyanine and merocyanine dyes
with partially locked polymethine chain. J Photochem Photobiol A 2008;200:
106e13.
[2] (a) Domercq B, Grasso C, Maldonado J-L, Halik M, Barlow S, Marder SR, et al.
Electron-transport properties and use in organic light-Emitting diodes of
a bis(dioxaborine)fluorene derivative. J Phys Chem B 2004;108:8647e51;
(b) Risko C, Zojer E, Brocorens P, Marder SR, Brédas J-L. Bis-aryl substituted
dioxaborines as electron-transport materials: a comparative density func-
tional theory investigation with oxadiazoles and siloles. Chem Phys 2005;313:
151e7;
[19] (a) Sanchez-Galvez A, Hunt P, Robb MA, Olivucci M, Vreven T, Schlegel HB.
Ultrafast radiationless deactivation of organic dyes: evidence for a two-state
two-mode pathway in polymethine cyanines. J Am Chem Soc 2000;122:
2911e24;
(c) Fabian J, Hartmann H. 1,3,2-Dioxaborines as potential components in
advanced materials - a theoretical study on electron affinity. J Phys Org Chem
2004;17:359e69;
(d) Halik M, Schmid G, Davis L. Infineon Technologies AG, DE Pat 10152938;
2002;
(b) Xu XF, Kahan A, Zilberg S, Haas Y. Photoreactivity of
a push-
pull merocyanine in static electric fields: a three-state model of isomeri-
(e) Hartmann H, Hunze A, Kanitz A, Rogler W, Rohde D. Osram Opto Semi-
conductors GmbH, US Pat 7026490B2; 2006.
zation reactions involving conical intersections.
J Phys Chem 2009;113:
9779e91;
[3] (a) Halik M, Wenseleers W, Grasso C, Stellacci F, Zojer E, Barlow S, et al.
Bis(dioxaborine) compounds with large two-photon cross sections, and their
use in the photodeposition of silver. Chem Commun 2003;13:1490e1;
(b) Zojer E, Wenseleers W, Pacher P, Barlow S, Halik M, Grasso C, et al.
Limitations of essential-state models for the description of two-photon
absorption proceses: the example of bis(dioxaborine)-substituted chromo-
phores. J Phys Chem B 2004;108:8641e6.
(c) Olsen S, McKenzie RH. Conical intersections, charge localization, and
photoisomerization pathway selection in a minimal model of degenerate
monomethine dye. J Chem Phys 2009;131:234306.
[20] Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to
measure? A demonstration using familiar stationery products. J Chem Educ
1999;76:1260e4.