2492
S.J. Sabounchei et al. / Polyhedron 30 (2011) 2486–2492
Table 6
Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033;
or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated
with this article can be found, in the online version, at doi:10.1016/
Calculated electronic energies (Hartree) for the studied complexes and their
components using different basis sets.
Compound
LanL2MB
LanL2DZ
CEP-121G
Brꢁ
ꢁ13.2064239
ꢁ13.2371155
ꢁ13.4633275
ꢁ11.5372418
ꢁ152.7585572
ꢁ203.5430001
ꢁ217.9604358
ꢁ175.0982868
ꢁ204.5004601
ꢁ222.7987857
ꢁ768.39909
Iꢁ
ꢁ11.4491618
ꢁ11.4721101
Hg2+
ꢁ41.7410709
ꢁ41.7934727
References
LA
ꢁ1145.9355197
ꢁ1299.8621332
ꢁ995.2882319
ꢁ1184.6632265
ꢁ1273.3085339
ꢁ2430.3842423
ꢁ2423.264557
ꢁ2731.1109945
ꢁ2121.9836911
ꢁ2500.7156233
ꢁ2677.9916739
ꢁ1160.360478
ꢁ1315.9404314
ꢁ1007.734925
ꢁ1199.4389067
ꢁ1289.3945752
ꢁ2459.1270171
ꢁ2452.0013356
ꢁ2763.1599004
ꢁ2146.7578878
ꢁ2530.16679
LB
[1] Y. Shen, Acc. Chem. Res. 31 (1998) 584.
[2] C. Puke, G. Erker, N.C. Aust, E.U. Wurthweine, R. Frohich, J. Am. Chem. Soc. 120
(1998) 4863.
[3] O.I. Kolodiazhnyi, Russ. Chem. Rev. 66 (1997) 224.
[4] D.E.C. Cobridge, Phosphorus an Outline of Chemistry, Biochemistry and Uses,
fifth ed., Elsevier, Amsterdam, 1995.
[5] M. Kalyanasundari, K. Panchanatheswaran, W.T. Robinson, H. Wen, J.
Organomet. Chem. 491 (1995) 103.
LC
LD
LE
Hg2LA2Br4
Hg2LA2I4
Hg2LB2I4
Hg2LC2I4
Hg2LD2I4
Hg2LE2I4
ꢁ760.6599385
ꢁ789.4909531
ꢁ703.7751327
ꢁ762.5806091
ꢁ799.1531352
[6] J.A. Albanese, A.L. Rheingold, J.L. Burmeister, Inorg. Chim. Acta 150 (1988) 213.
[7] M.L. Illingsworth, J.A. Teagle, J.L. Burmeister, W.C. Fultz, A.I. Rheingold,
Organometallics 2 (1983) 1364.
ꢁ2710.0519014
[8] J. Vicente, M.T. Chicote, J. Fernandez-Baeza, J. Martin, I. Saura-Llamas, J. Turpin,
P.G. Jones, J. Organomet. Chem. 331 (1987) 409.
[9] J. Vicente, M.T. Chicote, I. Saura-Llamas, J. Turpin, J. Fernandez-Baeza, J.
Organomet. Chem. 333 (1987) 129.
[10] J. Buckle, P.G. Harrison, T.J. King, J.A. Richards, J. Chem. Soc., Chem. Commun.
(1972) 1104.
Table 7
Calculated energies (kcal/mol) for the formation of Hg2L2X4 complexes according to
the reaction 2Hg2+ + 2L + 4Xꢁ ? Hg2L2X4 using different basis sets.
[11] J. Buckle, P.G. Harrison, J. Organomet. Chem. 49 (1973) C17.
[12] J.A. Albanese, D.A. Staley, A.L. Rheingold, J.L. Burmeister, Inorg. Chem. 29
(1990) 2209.
[13] I. Kawafune, G. Matsubayashi, Inorg. Chim. Acta 70 (1983) 1.
[14] R. Usón, J. Forniés, R. Navarro, P. Espinet, C. Mendívil, J. Organomet. Chem. 290
(1985) 125.
[15] S.J. Sabounchei, H. Nemattalab, S. Salehzadeh, S. Khani, M. Bayat, H. Adams,
M.D. Ward, Inorg. Chim. Acta 362 (2009) 105.
[16] S.J. Sabounchei, A. Dadrass, F. Akhlaghi, Z. Bolboli Nojini, H.R. Khavasi,
Polyhedron 27 (2008) 1963.
Compound
LanL2MB
LanL2DZ
CEP-121G
Hg2LA2Br4
Hg2LA2I4
Hg2LB2I4
Hg2LC2I4
Hg2LD2I4
Hg2LE2I4
ꢁ1383.88
ꢁ1327.01
ꢁ1322.75
ꢁ1335.61
ꢁ1324.28
ꢁ1315.14
ꢁ1173.85
ꢁ1132.65
ꢁ1131.80
ꢁ1137.45
ꢁ1138.04
ꢁ1121.58
ꢁ1219.04
ꢁ1197.19
ꢁ1194.77
ꢁ1200.10
ꢁ1200.80
ꢁ1185.66
[17] F. Ramirez, S. Dershowitz, J. Organomet. Chem. 22 (1957) 41.
[18] Stoe & Cie, X-AREA, Version 1.30: Program for the Acquisition and Analysis of
Data, Stoe & Cie GmbH, Darmatadt, Germany, 2005.
[19] G.M. Sheldrick, SHELX97. Program for Crystal Structure Solution and
Refinement, University of Göttingen, Germany, 1997.
[20] Stoe & Cie, X-STEP32, Version 1.07b: Crystallographic Package, Stoe & Cie
GmbH, Darmatadt, Germany, 2005.
[21] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[22] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[23] M.J. Frisch et al., GAUSSIAN 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA, 2003.
[24] E.C. Spencer, M.B. Mariyatra, J.A.K. Howard, A.M. Kenwright, K.
Panchanatheswaran, J. Organomet. Chem. 692 (2007) 1081.
[25] S.J. Sabounchei, M. Ahmadi Gharacheh, H.R. Khavasi, J. Coord. Chem. 63 (2010)
1165.
seen in Table 5, Hg2LA2Br4, both in the gas phase and in the solid
state, has a shorter Hg–C(ylide) bond length than Hg2LA2I4, indicat-
ing the slight decrease in the s character of the Hg(II) orbitals on
bonding to the ylidic carbon with decreasing electronegativity of
the coordinated halide ligands. We note that the difference be-
tween the Hg–C(ylide) bond lengths in Hg2LA2Br4 and Hg2LA2I4
complexes is only 0.023 Å. Thus it seems that the halide ion has
also a weak effect on the Hg–C(ylide) bond length. Therefore, the
difference between the energy of reaction (1) for Hg2LA2Br4 and
Hg2LA2I4 complexes depends mainly on the type of coordinated ha-
lide rather than strength of the bond between Hg(II) and the ylide.
[26] J. Vicente, M.T. Chicote, M.C. Lagunas, P.G. Jones, J. Chem. Soc., Dalton Trans. 10
(1991) 2579.
[27] S.J. Sabounchei, V. Jodaian, H.R. Khavasi, Polyhedron 26 (2007) 2845.
[28] M. Onishi, Y. Ohama, K. Hiraki, H. Shintan, Polyhedron 1 (1982) 539.
[29] G. Facchin, R. Bertani, M. Calligaris, G. Nardin, M. Mari, J. Chem. Soc., Dalton
Trans. 6 (1987) 1381.
[30] J.A. Teagle, J.L. Burmieister, Inorg. Chim. Acta 118 (1986) 65.
[31] S.J. Sabounchei, A. Dadrass, M. Jafarzadeh, S. Salehzadeh, H.R. Khavasi, J.
Organomet. Chem. 692 (2007) 2500.
[32] N.L. Holy, N.C. Baenziger, R.M. Flynn, D.C. Swenson, J. Am. Chem. Soc. 98 (1976)
7823.
[33] B. Kalyanasundari, K. Panchanatheswaran, V. Parthasarathi, W.T. Robinson,
Bull. Chem. Soc. Jpn. 72 (1999) 33.
[34] N.C. Baenziger, R.M. Flyuu, D.C. Swenson, Acta Crystallogr., Sect. B34 (1978)
2300.
[35] P. Laavanya, U. Venkatasubramanian, K. Panchanatheswaran, J.A. Krause Baure,
Chem. Commun. 17 (2001) 1660.
[36] U. Belluco, R.A. Michelin, R. Bertani, G. Facchin, G. Pace, L. Zanotto, M. Mozzon,
M. Furlan, E. Zangrando, Inorg. Chim. Acta 252 (1996) 355.
[37] S. Kato, T. Kato, M. Mizuta, K. Itoh, Y. Ishii, J. Organomet. Chem. 51 (1973) 167.
[38] H.A. Bent, Chem. Rev. 61 (1961) 275.
4. Conclusions
The present study describes the synthesis and characterization
of some binuclear Hg(II) complexes of a new phosphorus ylide.
On the basis of the physico-chemical and spectroscopic data we
propose that the ligand herein exhibits monodentate C-coordina-
tion to the metal center. Both the experimental and theoretical
studies show amongst all the five binuclear Hg2L2I4 complexes
studied here, complex 3 (Hg2LA2I4) has the shortest Hg–C(ylide)
bond length in both the solid state and gas phase. However, the
nature of the R group in the ylides of the type Ph3PCHCOR has a
weak effect on the Hg–C(ylide) bond length in the above
complexes.
[39] N.A. Bell, S.J. Coles, M.B. Hursthouse, M.E. Light, K.A. Malik, R. Mansor,
Polyhedron 19 (2000) 1719.
Acknowledgements
[40] B. Kalyanasundari, K. Panchanatheswaran, V. Parthasarathi, W.T. Robinson, H.
Wen, Acta Crystallogr. C50 (1994) 1738.
[41] J.E. Huheey, Inorganic Chemistry Principles of Structure and Reactivity, second
ed., Harper Int. Ed., New York, 1978.
We are grateful to the Bu-Ali Sina University for a grant and Mr.
Zebarjadian for recording the NMR spectra.
[42] S.J. Sabounchei, H. Nemattalab, S. Salehzadeh, M. Bayat, H.R. Khavasi, H.
Adams, J. Organomet. Chem. 693 (2008) 1975.
[43] S.J. Sabounchei, S. Samiee, S. Salehzadeh, M. Bayat, Z. Bolboli Nojini, D.
Morales-Morales, Inorg. Chim. Acta 363 (2010) 1254.
[44] S.J. Sabounchei, H. Nemattalab, S. Salehzadeh, S. Khani, M. Bayat, H.R. Khavasi,
Polyhedron 27 (2008) 2015.
[45] S.J. Sabounchei, V. Jodaian, S. Salehzadeh, S. Samiee, A. Dadrass, M. Bayat, H.R.
Khavasi, Helv. Chim. Acta 93 (2010) 1105.
Appendix A. Supplementary data
CCDC 751708 and 778462 contain the supplementary crystallo-
graphic data for complexes 2 and 3. These data can be obtained
ing.html, or from the Cambridge Crystallographic Data Centre, 12