Table 2 Absorption and emission maxima, molar absorptivity values
(log e), quantum yields (ff), and lifetimes (tf)
5 D. M. Walba, Tetrahedron, 1985, 41, 3161–3212.
6 (a) C. O. Dietrich-Buchecker and J.-P. Sauvage, Angew. Chem.,
Int. Ed. Engl., 1989, 28, 189–192; (b) C. O. Dietrich-Buchecker,
J. Guilhem, C. Pascard and J.-P. Sauvage, Angew. Chem., Int. Ed.
Engl., 1990, 29, 1154–1156; (c) C. O. Dietrich-Buchecker,
G. Rapenne and J.-P. Sauvage, Chem. Commun., 1997,
2053–2054; (d) C. O. Dietrich-Buchecker, G. Rapenne,
J.-P. Sauvage, A. De Cian and J. Fischer, Chem.–Eur. J., 1999,
5, 1432–1439; (e) G. Rapenne, C. O. Dietrich-Buchecker and
J.-P. Sauvage, J. Am. Chem. Soc., 1999, 121, 994–1001.
7 For the original proposal of a trefoil knot synthesisbased on an
octahedral metal template, see: (a) V. I. Sokolov, Russ. Chem. Rev.,
1973, 42, 452–463; (b) H. Adams, E. Ashworth, G. A. Breault,
J. Guo, C. A. Hunter and P. C. Mayers, Nature, 2001, 411,
763–764; (c) J. Guo, P. C. Mayers, G. A. Breault and
C. A. Hunter, Nat. Chem., 2010, 2, 218–222.
UV/Visa
abs/nm
Fluorescenceab
l
log e/cmÀ1 molÀ1
L
l
em/nm
ff
tf/ns
15
16
12
1
283
310
297
293
4.19
4.73
5.15
5.03
370
372
375
373
0.04
0.08
0.31
0.20
1.63
2.58
2.79
3.02
a
b
All values measured in CH2Cl2. PPO in cyclohexane (ff = 0.94)
was the standard;22 the emission maxima values were obtained at 75%
height.
The photophysical properties of reference compounds 15,
16 and 12 showed an increase in the molar absorptivity,
quantum yield, and lifetime in CH2Cl2 across the series. The
behavior of 12 most closely matches that of 1 (Table 2).
8 P. R. Ashton, O. A. Matthews, S. Menzer, F. M. Raymo,
N. Spencer, J. F. Stoddart and D. J. Williams, Liebigs Ann. Chem.,
1997, 2485–2494.
9 (a) O. Safarowsky, M. Nieger, R. Frohlich and F. Vogtle, Angew.
¨
¨
Chem., Int. Ed., 2000, 39, 1616–1618; (b) F. Vogtle, A. Hunten,
¨
¨
E. Vogel, S. Buschbeck, O. Safarowsky, J. Recker, A.-H. Parham,
M. Knott, W. M. Muller, U. Muller, Y. Okamoto, T. Kubota,
¨
¨
W. Lindner, E. Francotte and S. Grimme, Angew. Chem., Int. Ed.,
2001, 40, 2468–2471; (c) O. Lukin, J. Recker, A. Bohmer,
¨
W. M. Muller, T. Kubota, Y. Okamoto, M. Nieger, R. Frohlich
¨
¨
and F. Vogtle, Angew. Chem., Int. Ed., 2003, 42, 442–445; (d)
¨
For a review of the work done in the Vogtle lab, see: O.
¨
Lukin and F. Vogtle, Angew. Chem., Int. Ed., 2005, 44,
1456–1477.
¨
Synthesis of a D3-symmetric knotted cyclophane was
achieved by the cyclization of the alkynyl-capped intermediate
12 using the Eglinton protocol. The desired over–under
arrangement is controlled by means of a cantilever mechanism
to complex CuI ions to the crossed polypyridine arm in
12 - 13. Completion of the trefoil knot synthesis still requires
the cleavage of the central triethynylbenzene scaffold.
10 C. R. Woods, M. Benaglia, S. Toyota, K. Hardcastle and
J. S. Siegel, Angew. Chem., Int. Ed., 2001, 40, 749–751.
11 (a) E. Negishi, J. Org. Chem., 1977, 42, 1821–1823; (b) E. Negishi
and T. Takahashi, Org. Synth., 1988, 66, 67–74.
12 M. Benaglia, S. Toyota, C. R. Woods and J. S. Siegel, Tetrahedron
Lett., 1997, 38, 4737–4740.
13 J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508–524.
14 Z. Wu and J. S. Moore, Tetrahedron Lett., 1994, 35, 5539–5542.
15 Manisole
= 3,5-dimethylanisole; manisyl = 4-methoxy-2,6-
dimethylphenyl; J. C. Loren and J. S. Siegel, Angew. Chem., Int.
Ed., 2001, 40, 754–757.
Notes and references
16 S. Takahashi, Y. Kuroyama, K. Sonogashira and N. Hagihara,
Synthesis, 1980, 627–630.
1 (a) L. F. Liu, R. E. Depew and J. C. Wang, J. Mol. Biol., 1976, 106,
439–452; (b) L. F. Liu, C.-C. Liu and B. M. Alberts, Cell, 1980, 19,
697–707; (c) S. E. Wasserman, J. M. Dungan and N. R. Cozzarelli,
Science, 1985, 229, 171–174; (d) S. E. Wasserman and
N. R. Cozzarelli, Science, 1986, 232, 951–960; (e) S. Trigueros,
J. Arsuaga, M. E. Vazquez, D. W. Sumners and J. Roca, Nucleic
Acids Res., 2001, 29, 67–71.
2 (a) C. Liang and K. Mislow, J. Am. Chem. Soc., 1994, 116,
11189–11190; (b) O. Nureki, M. Shirouzu, K. Hashimoto,
R. Ishitani, T. Terada, M. Tamakoshi, T. Oshima,
M. Chijimatsu, K. Takio, D. G. Vassylyev, T. Shibata, Y. Inoue,
S. Kuramitsu and S. Yokoyama, Acta Crystallogr., Sect. D: Biol.
Crystallogr., 2002, 58, 1129–1137; (c) T. I. Zarembinski, Y. Kim,
K. Peterson, D. Christendat, A. Dharamsi, C. H. Arrowsmith,
A. M. Edwards and A. Joachimiak, Proteins: Struct., Funct.,
Genet., 2003, 50, 177–183; (d) W. Taylor, Nature, 2000, 406,
916–919; (e) C. Liang and K. Mislow, J. Am. Chem. Soc., 1995,
117, 4201–4214; (f) G. Schill, G. Doerjer, E. Logemann and
H. Fritz, Chem. Ber., 1979, 112, 3603–3615.
17 Attempts to form the knotted cyclophane from the deprotected
tricopper(I) complex suffered from poor solubility.
18 (a) D. C. Harris, in, Quantitative Chemical Analysis,
W. H. Freeman and Company, New York, Fourth edn, 1995;
(b) T. E. Glass, J. Am. Chem. Soc., 2000, 122, 4522–4523.
19 P. King and M. Maeder, ReactLab Equilibria, Jplus Consulting
Pty Ltd, 2011.
20 P. Siemsen, R. C. Livingston and F. Diederich, Angew. Chem., Int.
Ed., 2000, 39, 2632–2657.
21 Crystal data for compound 1: red crystals from CH3NO2, Nonius
KappaCCD diffractometer, [Cu3(C168H132N12O6)] (PF6)3, M =
3040.5, cubic, a = 33.7312(6) A, V = 38379(1) A3, T = 160(1)
K, space group P43n
ꢀ
, Z = 8, m(Mo-Ka) = 0.420 mmÀ1, 153 129
reflections measured, 7819 unique reflections, 4112 reflections with
I 4 2s(I). The available crystals were of poor quality and were
possibly not true single crystals. The best refinement yielded
R(F) = 0.21. The connectivity and gross topology of the cation
are clearly defined, but the geometric parameters should be
considered as approximate. The presence of additional
solvent molecules in the structure cannot be excluded. CCDC
779280 contains the supplementary crystallographic data for this
communication.
3 (a) J. E. Mueller, S. M. Du and N. C. Seeman, J. Am. Chem. Soc.,
1991, 113, 6306–6308; (b) J. Chen and N. C. Seeman, Nature, 1991,
350, 631–633; (c) For a representative review, see: N. C. Seeman,
Angew. Chem., Int. Ed., 1998, 37, 3220–3238; (d) M. Feigel,
R. Ladberg, S. Engels, R. Herbst-Irmer and R. Frohlich, Angew.
Chem., Int. Ed., 2006, 45, 5698–5702.
¨
22 N. Boens, W. Qin, N. Basaric, J. Hofkens, M. Ameloot, J. Pouget,
J.-P. Lefevre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva,
Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips,
A. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski,
A. G. Szabo, D. T. Krajcarski, N. Tamai and A. Miura, Anal.
Chem., 2007, 79, 2137–2149.
4 C. O. Dietrich-Buchecker, J.-P. Sauvage and J. P. Kintzinger,
Tetrahedron Lett., 1983, 24, 5095–5098; C. O. Dietrich-Buchecker,
B. Colasson, M. Fujita, A. Hori, N. Geum, S. Sakamoto,
K. Yamaguchi and J.-P. Sauvage, J. Am. Chem. Soc., 2003, 125,
5717–5725.
c
9590 Chem. Commun., 2011, 47, 9588–9590
This journal is The Royal Society of Chemistry 2011