5496
R. L. Hudkins et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5493–5497
AUC data with good brain exposure (B/P = 3.4). S-Me 21 had similar
oral bioavailability (%F = 37 based on 6 h AUC) with good brain
exposure in the rat (B/P = 2.5) (Table 3).
The rat dipsogenia model was used in the project as an in vivo
surrogate measure of H3R functional inhibition in the brain follow-
ing peripheral administration. Histamine and the H3-selective ago-
240
180
120
60
*
*
nist, R-a-methylhistamine (RAMH), induce water drinking in the
0
rat when administered either peripherally or centrally, an effect
that is blocked by H3R antagonists.1h,9 In this model both 13 and
21 potently and dose-dependently inhibited RAMH-induced dipso-
genia with ED50 values of 0.13 (0.02–0.91) mg/kg i.p. and 0.02
(0.005–0.07) mg/kg i.p., respectively. Following the demonstration
of potent in vivo H3R functional activity in the brain, 13 and 21
were further evaluated for wake promoting activity in the rat.10
Histamine-producing neurons are an important part of the mono-
aminergic arousal system and H3R antagonists have been docu-
mented to increase wakefulness in a number of species, although
at doses and cortical H3R occupancy levels much higher than those
producing activity in the dipsogenia model or efficacy in cognition
models.11 Wake promoting activity was measured as previously
described using male Sprague Dawley rats surgically implanted
for chronic recording of EEG (electroencephalographic) and EMG
(electromyographic) signals.12 The cumulative wake time at 4 h
after dosing was evaluated during the normal quiet period of the
Vehicle
3
10
30
Dose mg/kg (i.p.)
Figure 3. Compound 13-induced wake promotion; administered i.p. to male rats
chronically implanted with electrodes for recording EEG and EMG activity.
Cumulative wake 4 h AUC values shown for each dose (mean + SEM, n = 7–8/
group). ⁄p < 0.05, Dunnett’s post hoc versus vehicle.
maximal cumulative wake surplus was 196 min reached at 7 h.
EEG activity, behavior and body temperature were all normal at
the 3 or 10 mg/kg doses. At 10 mg/kg, 21 demonstrated robust
wake promotion, with the treated animals being awake 96% of
the time up to 4 h post dose and averaging a 62% increase in wake
time over the vehicle treated animals (Fig. 2). Compound 13 in-
creased wake activity in
a
dose-related manner at 10
(157 9 min) and 30 mg/kg (184 15 min) by 4 h AUC values
(P < 0.001 ANOVA) (Fig. 3). Compound 13 showed less robust wake
activity compared to 21, consistent with weaker potency in the
dipsogenia model.
rat. Compound 21 increased waking at
3 (166 6 min) and
10 mg/kg i.p. (231 6 min) by 4 h AUC values (P < 0.001 ANOVA).
In summary, H3R structure-activity relationships were disclosed
on the pyridazin-3-one phenoxypropyl amine core leading to the
identification of new molecules displaying excellent H3R target po-
tency, selectivity and rat pharmacokinetic properties. Compounds
13 and 21 were profiled in greater detail and advanced into
in vivo evaluations. Both compounds displayed potent H3R antag-
onist activity in the brain using the rat dipsogenia model as a func-
tional H3R readout and demonstrated potent wake-promoting
activity in the rat EEG/EMG model.
At 10 mg/kg, waking was enhanced out to 5.5 h post dosing, and
Table 3
Pharmacokinetic properties in rata
2b
13b
21c
i.v.
p.o
t1/2/(h)
Vd (L/kg)
CL (mL/min/kg)
1.6 0.3
6.5 2.9
45 11
1.2 0.3
4.5 1.4
0.8 0.2
2.5 1.0
38
7
37
8
References and notes
AUC (ng h/mL)
Cmax (ng/mL)
t1/2/(h)
538 75
936 166
284 34
1.6
892 198
1. For reviews see: (a) Berlin, M.; Boyce, C. W.; de Lera Ruiz, M. J. Med. Chem. 2011,
54, 26; (b) Brown, R. E.; Stevens, D. R.; Haas, H. L. Prog. Neurobiol. 2001, 63, 637;
(c) Leurs, R.; Bakker, R. A.; Timmerman, H.; de Esch, I. J. Nat. Rev. Drug Discovery
2005, 4, 107; (d) Wijtmans, M.; Leurs, R.; de Esch, I. Expert Opin. Investig. Drugs
2007, 16, 967; (e) Esbenshade, T. A.; Fox, G. B.; Cowart, M. D. Mol. Interv. 2006,
6, 77; (f) Esbenshade, T. A.; Browman, K. E.; Bitner, R. S.; Strakhova, M.; Cowart,
M. D.; Brioni, J. D. Br. J. Pharmacol. 2008, 154, 1166; (g) Hudkins, R. L.; Raddatz,
R. Ann. Rep. Med. Chem. 2007, 42, 49; (h) Raddatz, R.; Tao, M.; Hudkins, R. L.
Curr. Top. Med. Chem. 2010, 10, 153; (i) Brioni, J. D.; Esbenshade, T. A.; Garrison,
T. R.; Bitner, S. R.; Cowart, M. D. J. Pharmacol. Exp. Ther. 2011, 336, 38;
(j) Medhurst, A. D.; Atkins, A. R.; Beresford, I. J.; Brackenborough, K.; Briggs, M.
A.; Calver, A. R.; Cilia, J.; Cluderay, J. E.; Crook, B.; Davis, J. B.; Davis, R. K.; Davis,
R. P.; Dawson, L. A.; Foley, A. G.; Gartlon, J.; Gonzalez, M. I.; Heslop, T.; Hirst, W.
D.; Jennings, C.; Jones, D. N.; Lacroix, L. P.; Martyn, A.; Ociepka, S.; Ray, A.;
Regan, C. M.; Roberts, J. C.; Schogger, J.; Southam, E.; Stean, T. O.; Trail, B. K.;
Upton, N.; Wadsworth, G.; Wald, J. A.; White, T.; Witherington, J.; Woolley, M.
L.; Worby, A.; Wilson, D. M. J.Pharmacol. Exp. Ther. 2007, 321, 1032; (k) Nagase,
T.; Mizutani, T.; Ishikawa, S.; Sekino, E.; Sasaki, T.; Fujimura, T.; Ito, S.; Mitobe,
Y.; Miyamoto, Y.; Yoshimoto, R.; Tanaka, T.; Ishihara, A.; Takenaga, N.; Tokita,
S.; Fukami, T.; Sato, N. J. Med. Chem. 2008, 51, 4780; (l) Thompson Reuters
Integrity, Bavisant, entry 470497, 2011.; (m) Thompson Reuters Integrity, MK-
0249, entry 433171, 2011.
2. (a) Leurs, R.; Chazot, P. L.; Shenton, F. C.; Lim, H. D.; de Esch, I. J. Br. J. Pharmacol.
2009, 157, 14; (b) Zampeli, E.; Tiligada, E. Br. J. Pharmacol. 2009, 157, 24;
(c) Bhatt, H. G.; Agrawal, Y. K.; Raval, H. G.; Manna, K.; Desai, P. R. Mini Rev. Med.
Chem. 2010, 10, 1293.
3. Bacon, E. R.; Bailey, T. R.; Becknell, N. C.; Chatterjee, S.; Dunn, D.; Hostetler, G.
A.; Hudkins, R. L.; Josef, K. A.; Knutsen, L.; Tao, M.; Zulli, A. L.; US2010273779,
2010.
4. Hudkins, R. L.; Raddatz, R.; Tao, M.; Mathiasen, J. R.; Aimone, L. D.; Becknell, N.
C.; Prouty, C. P.; Knutsen, L.; Yazdanian, M.; Moachon, G.; Ator, M. A.; Mallamo,
J. P.; Marino, M. J.; Bacon, E. R.; Williams, M. J. Med. Chem. 2011, 54, 4781.
5. (a) Curran, W. V.; Ross, A. J. Med. Chem. 1974, 17, 273; (b) Sotelo, E.; Ravina, E.
Syn. Comm. 2000, 30, 1.
6. (a) Wermuth, C. G.; Schlewer, G.; Bourguignon, J. J.; Maghioros, G.; Bouchet, M.
J.; Moire, C.; Kan, J. P.; Worms, P.; Biziere, K. J. Med. Chem. 1989, 32, 528;
(b) Coates, W. J.; McKillop, A. Synthesis 1993, 334.
123
2.3
28
6
146
4.3
38
9
F (%)
4
42
7
8
B/Pd
3.5 0.4
3.4 0.3
2.5 0.1
a
Administration at 1 mg/mg i.v. and 5 mg/kg p.o.; data calculated from 6 h AUC
values.
b
i.v. formulation (3% DMSO, 30% solutol, 67% phosphate buffered saline) oral
formulation (saline).
c
i.v. formulation (3% DMSO, 30% solutol, 67% phosphate buffered saline) oral
formulation (50% Tween 80, 40% propylene carbonate and 10% propylene glycol).
d
B/P = brain to plasma ratio.
*
240
*
180
120
60
0
Vehicle
3
10
Dose mg/kg (i.p.)
Figure 2. Compound 21-induced wake promotion; administered i.p. to male rats
chronically implanted with electrodes for recording EEG and EMG activity.
Cumulative wake 4 h AUC values shown for each dose (mean + SEM, n = 7–8/
group). ⁄p < 0.05 Dunnett’s post hoc versus vehicle.